Properties

Label 4-1920e2-1.1-c1e2-0-2
Degree $4$
Conductor $3686400$
Sign $1$
Analytic cond. $235.048$
Root an. cond. $3.91551$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s − 9-s + 8·17-s − 8·23-s − 25-s − 8·31-s + 12·41-s − 16·47-s − 2·49-s + 4·63-s − 16·71-s − 12·73-s − 8·79-s + 81-s − 12·89-s − 28·97-s + 28·103-s + 32·113-s − 32·119-s + 18·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 8·153-s + ⋯
L(s)  = 1  − 1.51·7-s − 1/3·9-s + 1.94·17-s − 1.66·23-s − 1/5·25-s − 1.43·31-s + 1.87·41-s − 2.33·47-s − 2/7·49-s + 0.503·63-s − 1.89·71-s − 1.40·73-s − 0.900·79-s + 1/9·81-s − 1.27·89-s − 2.84·97-s + 2.75·103-s + 3.01·113-s − 2.93·119-s + 1.63·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 0.646·153-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3686400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3686400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3686400\)    =    \(2^{14} \cdot 3^{2} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(235.048\)
Root analytic conductor: \(3.91551\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 3686400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6223546656\)
\(L(\frac12)\) \(\approx\) \(0.6223546656\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + T^{2} \)
5$C_2$ \( 1 + T^{2} \)
good7$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
11$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
19$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
29$C_2^2$ \( 1 - 54 T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
53$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 - 82 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - p T^{2} )^{2} \)
67$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 + 90 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.641214052552447118854817027544, −8.937392507723227211213638940724, −8.767485436494887063419299969576, −8.091336129868759217900724226901, −7.899202937869052609940500356239, −7.37914790000760467276501922256, −7.17606597733154616563819357780, −6.55596640815945222061463406359, −6.03297402500341719169067061997, −5.89309596563536002351928267567, −5.66396393363963465040847778028, −4.94519115195961000641508632514, −4.48796454073255759835434882804, −3.71639244827035964013692630335, −3.69469712571173470165046296228, −2.91086673768889109528669180180, −2.88724812615568754402538124865, −1.86768577791447890582072157859, −1.38644709173511764815421094461, −0.28752645143261348999817777872, 0.28752645143261348999817777872, 1.38644709173511764815421094461, 1.86768577791447890582072157859, 2.88724812615568754402538124865, 2.91086673768889109528669180180, 3.69469712571173470165046296228, 3.71639244827035964013692630335, 4.48796454073255759835434882804, 4.94519115195961000641508632514, 5.66396393363963465040847778028, 5.89309596563536002351928267567, 6.03297402500341719169067061997, 6.55596640815945222061463406359, 7.17606597733154616563819357780, 7.37914790000760467276501922256, 7.899202937869052609940500356239, 8.091336129868759217900724226901, 8.767485436494887063419299969576, 8.937392507723227211213638940724, 9.641214052552447118854817027544

Graph of the $Z$-function along the critical line