Properties

Label 4-18e4-1.1-c7e2-0-0
Degree $4$
Conductor $104976$
Sign $1$
Analytic cond. $10244.0$
Root an. cond. $10.0604$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 270·5-s − 1.11e3·7-s + 5.72e3·11-s + 4.57e3·13-s − 7.31e4·17-s + 1.03e5·19-s − 2.22e4·23-s + 7.81e4·25-s + 1.57e5·29-s + 1.03e5·31-s + 3.00e5·35-s − 1.89e5·37-s − 6.59e5·41-s + 7.57e4·43-s − 4.05e5·47-s + 8.23e5·49-s − 2.69e6·53-s − 1.54e6·55-s + 1.30e6·59-s − 1.83e6·61-s − 1.23e6·65-s − 1.36e6·67-s + 5.42e6·71-s + 5.73e6·73-s − 6.36e6·77-s + 1.12e6·79-s − 5.91e6·83-s + ⋯
L(s)  = 1  − 0.965·5-s − 1.22·7-s + 1.29·11-s + 0.576·13-s − 3.60·17-s + 3.46·19-s − 0.381·23-s + 25-s + 1.19·29-s + 0.626·31-s + 1.18·35-s − 0.615·37-s − 1.49·41-s + 0.145·43-s − 0.569·47-s + 49-s − 2.48·53-s − 1.25·55-s + 0.826·59-s − 1.03·61-s − 0.557·65-s − 0.556·67-s + 1.79·71-s + 1.72·73-s − 1.58·77-s + 0.257·79-s − 1.13·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 104976 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 104976 ^{s/2} \, \Gamma_{\C}(s+7/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(104976\)    =    \(2^{4} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(10244.0\)
Root analytic conductor: \(10.0604\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 104976,\ (\ :7/2, 7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(0.04873798068\)
\(L(\frac12)\) \(\approx\) \(0.04873798068\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( 1 + 54 p T - 209 p^{2} T^{2} + 54 p^{8} T^{3} + p^{14} T^{4} \)
7$C_2^2$ \( 1 + 1112 T + 413001 T^{2} + 1112 p^{7} T^{3} + p^{14} T^{4} \)
11$C_2^2$ \( 1 - 5724 T + 13277005 T^{2} - 5724 p^{7} T^{3} + p^{14} T^{4} \)
13$C_2^2$ \( 1 - 4570 T - 41863617 T^{2} - 4570 p^{7} T^{3} + p^{14} T^{4} \)
17$C_2$ \( ( 1 + 36558 T + p^{7} T^{2} )^{2} \)
19$C_2$ \( ( 1 - 51740 T + p^{7} T^{2} )^{2} \)
23$C_2^2$ \( 1 + 22248 T - 2909851943 T^{2} + 22248 p^{7} T^{3} + p^{14} T^{4} \)
29$C_2^2$ \( 1 - 157194 T + 7460077327 T^{2} - 157194 p^{7} T^{3} + p^{14} T^{4} \)
31$C_2^2$ \( 1 - 103936 T - 16709922015 T^{2} - 103936 p^{7} T^{3} + p^{14} T^{4} \)
37$C_2$ \( ( 1 + 94834 T + p^{7} T^{2} )^{2} \)
41$C_2^2$ \( 1 + 659610 T + 240331078219 T^{2} + 659610 p^{7} T^{3} + p^{14} T^{4} \)
43$C_2^2$ \( 1 - 75772 T - 266077215123 T^{2} - 75772 p^{7} T^{3} + p^{14} T^{4} \)
47$C_2^2$ \( 1 + 405648 T - 342072820559 T^{2} + 405648 p^{7} T^{3} + p^{14} T^{4} \)
53$C_2$ \( ( 1 + 1346274 T + p^{7} T^{2} )^{2} \)
59$C_2^2$ \( 1 - 1303884 T - 788537999363 T^{2} - 1303884 p^{7} T^{3} + p^{14} T^{4} \)
61$C_2^2$ \( 1 + 30062 p T + 59127543 p^{2} T^{2} + 30062 p^{8} T^{3} + p^{14} T^{4} \)
67$C_2^2$ \( 1 + 1369388 T - 4185488110779 T^{2} + 1369388 p^{7} T^{3} + p^{14} T^{4} \)
71$C_2$ \( ( 1 - 2714040 T + p^{7} T^{2} )^{2} \)
73$C_2$ \( ( 1 - 2868794 T + p^{7} T^{2} )^{2} \)
79$C_2^2$ \( 1 - 1129648 T - 17927804382255 T^{2} - 1129648 p^{7} T^{3} + p^{14} T^{4} \)
83$C_2^2$ \( 1 + 5912028 T + 7816024083157 T^{2} + 5912028 p^{7} T^{3} + p^{14} T^{4} \)
89$C_2$ \( ( 1 + 897750 T + p^{7} T^{2} )^{2} \)
97$C_2^2$ \( 1 + 13719074 T + 107414706939363 T^{2} + 13719074 p^{7} T^{3} + p^{14} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.96648125326370424167546061746, −10.05951127372580387803498176460, −9.497691210515241476256525800389, −9.328174919981083565654011212845, −8.873749744867254034745447490361, −8.277847231514560599102578288380, −7.919290744061293111750294143666, −6.96574043360384886437482420760, −6.76818002561486737342000569658, −6.61643673653370236252139030534, −5.94950038222735152900788866351, −4.89623282934987244256125614795, −4.83217720888099950701561914413, −3.82890436514951123766563072424, −3.72320177272036356927991141471, −2.99581203637746284474642805173, −2.54430919253930439269969692484, −1.42875630174275681341853466601, −1.06419246943259190529503173783, −0.05410410626730934161571091430, 0.05410410626730934161571091430, 1.06419246943259190529503173783, 1.42875630174275681341853466601, 2.54430919253930439269969692484, 2.99581203637746284474642805173, 3.72320177272036356927991141471, 3.82890436514951123766563072424, 4.83217720888099950701561914413, 4.89623282934987244256125614795, 5.94950038222735152900788866351, 6.61643673653370236252139030534, 6.76818002561486737342000569658, 6.96574043360384886437482420760, 7.919290744061293111750294143666, 8.277847231514560599102578288380, 8.873749744867254034745447490361, 9.328174919981083565654011212845, 9.497691210515241476256525800389, 10.05951127372580387803498176460, 10.96648125326370424167546061746

Graph of the $Z$-function along the critical line