Properties

Label 4-18e4-1.1-c3e2-0-1
Degree $4$
Conductor $104976$
Sign $1$
Analytic cond. $365.445$
Root an. cond. $4.37225$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 18·5-s − 8·7-s − 36·11-s + 10·13-s + 36·17-s − 200·19-s − 72·23-s + 125·25-s + 234·29-s + 16·31-s − 144·35-s − 452·37-s − 90·41-s − 452·43-s − 432·47-s + 343·49-s + 828·53-s − 648·55-s + 684·59-s − 422·61-s + 180·65-s − 332·67-s − 720·71-s + 52·73-s + 288·77-s − 512·79-s + 1.18e3·83-s + ⋯
L(s)  = 1  + 1.60·5-s − 0.431·7-s − 0.986·11-s + 0.213·13-s + 0.513·17-s − 2.41·19-s − 0.652·23-s + 25-s + 1.49·29-s + 0.0926·31-s − 0.695·35-s − 2.00·37-s − 0.342·41-s − 1.60·43-s − 1.34·47-s + 49-s + 2.14·53-s − 1.58·55-s + 1.50·59-s − 0.885·61-s + 0.343·65-s − 0.605·67-s − 1.20·71-s + 0.0833·73-s + 0.426·77-s − 0.729·79-s + 1.57·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 104976 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 104976 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(104976\)    =    \(2^{4} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(365.445\)
Root analytic conductor: \(4.37225\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 104976,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.069756140\)
\(L(\frac12)\) \(\approx\) \(2.069756140\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( 1 - 18 T + 199 T^{2} - 18 p^{3} T^{3} + p^{6} T^{4} \)
7$C_2^2$ \( 1 + 8 T - 279 T^{2} + 8 p^{3} T^{3} + p^{6} T^{4} \)
11$C_2^2$ \( 1 + 36 T - 35 T^{2} + 36 p^{3} T^{3} + p^{6} T^{4} \)
13$C_2^2$ \( 1 - 10 T - 2097 T^{2} - 10 p^{3} T^{3} + p^{6} T^{4} \)
17$C_2$ \( ( 1 - 18 T + p^{3} T^{2} )^{2} \)
19$C_2$ \( ( 1 + 100 T + p^{3} T^{2} )^{2} \)
23$C_2^2$ \( 1 + 72 T - 6983 T^{2} + 72 p^{3} T^{3} + p^{6} T^{4} \)
29$C_2^2$ \( 1 - 234 T + 30367 T^{2} - 234 p^{3} T^{3} + p^{6} T^{4} \)
31$C_2^2$ \( 1 - 16 T - 29535 T^{2} - 16 p^{3} T^{3} + p^{6} T^{4} \)
37$C_2$ \( ( 1 + 226 T + p^{3} T^{2} )^{2} \)
41$C_2^2$ \( 1 + 90 T - 60821 T^{2} + 90 p^{3} T^{3} + p^{6} T^{4} \)
43$C_2^2$ \( 1 + 452 T + 124797 T^{2} + 452 p^{3} T^{3} + p^{6} T^{4} \)
47$C_2^2$ \( 1 + 432 T + 82801 T^{2} + 432 p^{3} T^{3} + p^{6} T^{4} \)
53$C_2$ \( ( 1 - 414 T + p^{3} T^{2} )^{2} \)
59$C_2^2$ \( 1 - 684 T + 262477 T^{2} - 684 p^{3} T^{3} + p^{6} T^{4} \)
61$C_2^2$ \( 1 + 422 T - 48897 T^{2} + 422 p^{3} T^{3} + p^{6} T^{4} \)
67$C_2^2$ \( 1 + 332 T - 190539 T^{2} + 332 p^{3} T^{3} + p^{6} T^{4} \)
71$C_2$ \( ( 1 + 360 T + p^{3} T^{2} )^{2} \)
73$C_2$ \( ( 1 - 26 T + p^{3} T^{2} )^{2} \)
79$C_2^2$ \( 1 + 512 T - 230895 T^{2} + 512 p^{3} T^{3} + p^{6} T^{4} \)
83$C_2^2$ \( 1 - 1188 T + 839557 T^{2} - 1188 p^{3} T^{3} + p^{6} T^{4} \)
89$C_2$ \( ( 1 + 630 T + p^{3} T^{2} )^{2} \)
97$C_2^2$ \( 1 - 1054 T + 198243 T^{2} - 1054 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.43848592923593987938470684567, −10.61216802299883852630101740874, −10.29553006012149508293066500312, −10.08654322941997610793102016517, −9.943750440043298503876816067932, −8.809995159413653243515033930688, −8.734837888530627479987342509794, −8.366175446852473700205705169528, −7.57756382248117425255313414612, −6.83679398541803652277218034304, −6.57020862355900790720401569338, −5.93504526661038324901158084350, −5.67128313361226790105324766739, −4.95928872788410146533922219163, −4.46336580384367985116580119687, −3.56358895733880241361126288584, −2.90259414787113244866039686789, −2.05870349678110662650084651497, −1.84633148894208864292107148723, −0.49058899041754162739998370185, 0.49058899041754162739998370185, 1.84633148894208864292107148723, 2.05870349678110662650084651497, 2.90259414787113244866039686789, 3.56358895733880241361126288584, 4.46336580384367985116580119687, 4.95928872788410146533922219163, 5.67128313361226790105324766739, 5.93504526661038324901158084350, 6.57020862355900790720401569338, 6.83679398541803652277218034304, 7.57756382248117425255313414612, 8.366175446852473700205705169528, 8.734837888530627479987342509794, 8.809995159413653243515033930688, 9.943750440043298503876816067932, 10.08654322941997610793102016517, 10.29553006012149508293066500312, 10.61216802299883852630101740874, 11.43848592923593987938470684567

Graph of the $Z$-function along the critical line