Properties

Label 4-18e4-1.1-c2e2-0-8
Degree $4$
Conductor $104976$
Sign $1$
Analytic cond. $77.9399$
Root an. cond. $2.97125$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 12·4-s − 8·5-s − 32·8-s + 32·10-s + 10·13-s + 80·16-s + 16·17-s − 96·20-s + 25·25-s − 40·26-s + 40·29-s − 192·32-s − 64·34-s + 70·37-s + 256·40-s + 160·41-s + 98·49-s − 100·50-s + 120·52-s + 112·53-s − 160·58-s + 22·61-s + 448·64-s − 80·65-s + 192·68-s − 110·73-s + ⋯
L(s)  = 1  − 2·2-s + 3·4-s − 8/5·5-s − 4·8-s + 16/5·10-s + 0.769·13-s + 5·16-s + 0.941·17-s − 4.79·20-s + 25-s − 1.53·26-s + 1.37·29-s − 6·32-s − 1.88·34-s + 1.89·37-s + 32/5·40-s + 3.90·41-s + 2·49-s − 2·50-s + 2.30·52-s + 2.11·53-s − 2.75·58-s + 0.360·61-s + 7·64-s − 1.23·65-s + 2.82·68-s − 1.50·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 104976 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 104976 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(104976\)    =    \(2^{4} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(77.9399\)
Root analytic conductor: \(2.97125\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 104976,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.7309711401\)
\(L(\frac12)\) \(\approx\) \(0.7309711401\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + p T )^{2} \)
3 \( 1 \)
good5$C_2^2$ \( 1 + 8 T + 39 T^{2} + 8 p^{2} T^{3} + p^{4} T^{4} \)
7$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
11$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
13$C_2^2$ \( 1 - 10 T - 69 T^{2} - 10 p^{2} T^{3} + p^{4} T^{4} \)
17$C_2^2$ \( 1 - 16 T - 33 T^{2} - 16 p^{2} T^{3} + p^{4} T^{4} \)
19$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
23$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
29$C_2^2$ \( 1 - 40 T + 759 T^{2} - 40 p^{2} T^{3} + p^{4} T^{4} \)
31$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
37$C_2^2$ \( 1 - 70 T + 3531 T^{2} - 70 p^{2} T^{3} + p^{4} T^{4} \)
41$C_2$ \( ( 1 - 80 T + p^{2} T^{2} )^{2} \)
43$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
47$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
53$C_2$ \( ( 1 - 56 T + p^{2} T^{2} )^{2} \)
59$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
61$C_2^2$ \( 1 - 22 T - 3237 T^{2} - 22 p^{2} T^{3} + p^{4} T^{4} \)
67$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
71$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
73$C_2^2$ \( 1 + 110 T + 6771 T^{2} + 110 p^{2} T^{3} + p^{4} T^{4} \)
79$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
83$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
89$C_2^2$ \( 1 - 160 T + 17679 T^{2} - 160 p^{2} T^{3} + p^{4} T^{4} \)
97$C_2$ \( ( 1 + 130 T + p^{2} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.42314697617544682812712318328, −11.10034675815188262493856701782, −10.53712746844560854557603334554, −10.43621669501808987442458672724, −9.519334601682887062453703182589, −9.385248864412942152020010196831, −8.659277787449480728695820620469, −8.380697263077570212440411947796, −7.81949128746743947609387918957, −7.58691665765103798899556761540, −7.19751639288390397635840454626, −6.51780485172428134108876869147, −5.92074395385771051389233910138, −5.53971010336517250355527958985, −4.08003335280628197559644753976, −4.01028041070705099324753152079, −2.84801272538593139837347338514, −2.56345218017214313659615948721, −1.06193326555299248479842619375, −0.72084931986091153669628774411, 0.72084931986091153669628774411, 1.06193326555299248479842619375, 2.56345218017214313659615948721, 2.84801272538593139837347338514, 4.01028041070705099324753152079, 4.08003335280628197559644753976, 5.53971010336517250355527958985, 5.92074395385771051389233910138, 6.51780485172428134108876869147, 7.19751639288390397635840454626, 7.58691665765103798899556761540, 7.81949128746743947609387918957, 8.380697263077570212440411947796, 8.659277787449480728695820620469, 9.385248864412942152020010196831, 9.519334601682887062453703182589, 10.43621669501808987442458672724, 10.53712746844560854557603334554, 11.10034675815188262493856701782, 11.42314697617544682812712318328

Graph of the $Z$-function along the critical line