Properties

Label 4-189e2-1.1-c2e2-0-1
Degree $4$
Conductor $35721$
Sign $1$
Analytic cond. $26.5212$
Root an. cond. $2.26933$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 5·4-s − 7·7-s − 20·8-s − 34·11-s − 14·14-s + 5·16-s − 68·22-s − 64·23-s + 47·25-s + 35·28-s − 4·29-s + 118·32-s + 16·37-s + 52·43-s + 170·44-s − 128·46-s + 94·50-s + 2·53-s + 140·56-s − 8·58-s + 111·64-s − 68·67-s + 20·71-s + 32·74-s + 238·77-s − 92·79-s + ⋯
L(s)  = 1  + 2-s − 5/4·4-s − 7-s − 5/2·8-s − 3.09·11-s − 14-s + 5/16·16-s − 3.09·22-s − 2.78·23-s + 1.87·25-s + 5/4·28-s − 0.137·29-s + 3.68·32-s + 0.432·37-s + 1.20·43-s + 3.86·44-s − 2.78·46-s + 1.87·50-s + 2/53·53-s + 5/2·56-s − 0.137·58-s + 1.73·64-s − 1.01·67-s + 0.281·71-s + 0.432·74-s + 3.09·77-s − 1.16·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35721 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35721 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(35721\)    =    \(3^{6} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(26.5212\)
Root analytic conductor: \(2.26933\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 35721,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.3314551837\)
\(L(\frac12)\) \(\approx\) \(0.3314551837\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
7$C_2$ \( 1 + p T + p^{2} T^{2} \)
good2$C_2$ \( ( 1 - T + p^{2} T^{2} )^{2} \)
5$C_2^2$ \( 1 - 47 T^{2} + p^{4} T^{4} \)
11$C_2$ \( ( 1 + 17 T + p^{2} T^{2} )^{2} \)
13$C_2^2$ \( 1 - 38 T^{2} + p^{4} T^{4} \)
17$C_2^2$ \( 1 + 394 T^{2} + p^{4} T^{4} \)
19$C_2^2$ \( 1 - 290 T^{2} + p^{4} T^{4} \)
23$C_2$ \( ( 1 + 32 T + p^{2} T^{2} )^{2} \)
29$C_2$ \( ( 1 + 2 T + p^{2} T^{2} )^{2} \)
31$C_2^2$ \( 1 - 1415 T^{2} + p^{4} T^{4} \)
37$C_2$ \( ( 1 - 8 T + p^{2} T^{2} )^{2} \)
41$C_2^2$ \( 1 - 3170 T^{2} + p^{4} T^{4} \)
43$C_2$ \( ( 1 - 26 T + p^{2} T^{2} )^{2} \)
47$C_2^2$ \( 1 - 2966 T^{2} + p^{4} T^{4} \)
53$C_2$ \( ( 1 - T + p^{2} T^{2} )^{2} \)
59$C_2^2$ \( 1 + 1150 T^{2} + p^{4} T^{4} \)
61$C_2^2$ \( 1 - 2642 T^{2} + p^{4} T^{4} \)
67$C_2$ \( ( 1 + 34 T + p^{2} T^{2} )^{2} \)
71$C_2$ \( ( 1 - 10 T + p^{2} T^{2} )^{2} \)
73$C_2^2$ \( 1 - 7391 T^{2} + p^{4} T^{4} \)
79$C_2$ \( ( 1 + 46 T + p^{2} T^{2} )^{2} \)
83$C_2^2$ \( 1 - 3335 T^{2} + p^{4} T^{4} \)
89$C_2^2$ \( 1 - 13142 T^{2} + p^{4} T^{4} \)
97$C_2^2$ \( 1 - 10391 T^{2} + p^{4} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.77116681215677246141968053360, −12.23117804345371914011053653621, −12.17280929211006599713793801629, −10.99806804712751197822960994793, −10.51929988321912560901238440231, −10.02381456096995340894473142818, −9.785918865459859663624757060411, −9.095117619245174764350320389155, −8.541791010621970061454673428167, −7.914037290470480177414403438918, −7.78231874251645278760711753648, −6.64970874101008954596164589703, −5.93871724284969019484933223568, −5.54032767006235777613325884001, −5.11864176104495110377628319430, −4.42068306404786360271414731977, −3.88813747252085528635158596070, −2.91287068670085263631339624691, −2.68260966030812531205220731248, −0.27855393976472914367043885314, 0.27855393976472914367043885314, 2.68260966030812531205220731248, 2.91287068670085263631339624691, 3.88813747252085528635158596070, 4.42068306404786360271414731977, 5.11864176104495110377628319430, 5.54032767006235777613325884001, 5.93871724284969019484933223568, 6.64970874101008954596164589703, 7.78231874251645278760711753648, 7.914037290470480177414403438918, 8.541791010621970061454673428167, 9.095117619245174764350320389155, 9.785918865459859663624757060411, 10.02381456096995340894473142818, 10.51929988321912560901238440231, 10.99806804712751197822960994793, 12.17280929211006599713793801629, 12.23117804345371914011053653621, 12.77116681215677246141968053360

Graph of the $Z$-function along the critical line