Properties

Label 4-189728-1.1-c1e2-0-4
Degree $4$
Conductor $189728$
Sign $1$
Analytic cond. $12.0972$
Root an. cond. $1.86496$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 8-s − 6·9-s + 16-s − 6·18-s + 2·25-s + 12·29-s + 32-s − 6·36-s + 12·37-s − 7·49-s + 2·50-s + 12·53-s + 12·58-s + 64-s − 6·72-s + 12·74-s + 27·81-s − 7·98-s + 2·100-s + 12·106-s + 28·109-s − 12·113-s + 12·116-s + 121-s + 127-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.353·8-s − 2·9-s + 1/4·16-s − 1.41·18-s + 2/5·25-s + 2.22·29-s + 0.176·32-s − 36-s + 1.97·37-s − 49-s + 0.282·50-s + 1.64·53-s + 1.57·58-s + 1/8·64-s − 0.707·72-s + 1.39·74-s + 3·81-s − 0.707·98-s + 1/5·100-s + 1.16·106-s + 2.68·109-s − 1.12·113-s + 1.11·116-s + 1/11·121-s + 0.0887·127-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 189728 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 189728 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(189728\)    =    \(2^{5} \cdot 7^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(12.0972\)
Root analytic conductor: \(1.86496\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 189728,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.210217144\)
\(L(\frac12)\) \(\approx\) \(2.210217144\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 - T \)
7$C_2$ \( 1 + p T^{2} \)
11$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good3$C_2$ \( ( 1 + p T^{2} )^{2} \)
5$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 86 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 + 86 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 90 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 74 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2^2$ \( 1 + 158 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 66 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.997291626899887384834143254771, −8.522246390101857531471954059736, −8.274641504568037282484115409443, −7.75982184044138210927564408635, −7.09150215403131244147991849894, −6.54531944321006279560610218323, −5.98733213940681576713921339220, −5.85996965103172325339290708243, −5.00929014774510108829753339263, −4.74664631908576468087518057764, −3.98206263095044002418964687092, −3.20691175465193001901614030060, −2.79044026532772992918458360057, −2.26587343690739134274856106498, −0.856901038950492236185677643703, 0.856901038950492236185677643703, 2.26587343690739134274856106498, 2.79044026532772992918458360057, 3.20691175465193001901614030060, 3.98206263095044002418964687092, 4.74664631908576468087518057764, 5.00929014774510108829753339263, 5.85996965103172325339290708243, 5.98733213940681576713921339220, 6.54531944321006279560610218323, 7.09150215403131244147991849894, 7.75982184044138210927564408635, 8.274641504568037282484115409443, 8.522246390101857531471954059736, 8.997291626899887384834143254771

Graph of the $Z$-function along the critical line