Properties

Label 4-189728-1.1-c1e2-0-21
Degree $4$
Conductor $189728$
Sign $-1$
Analytic cond. $12.0972$
Root an. cond. $1.86496$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 2·7-s − 8-s + 2·9-s + 6·11-s + 2·14-s + 16-s − 2·18-s − 6·22-s − 8·23-s − 6·25-s − 2·28-s + 2·29-s − 32-s + 2·36-s − 14·37-s − 24·43-s + 6·44-s + 8·46-s − 3·49-s + 6·50-s − 2·53-s + 2·56-s − 2·58-s − 4·63-s + 64-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.755·7-s − 0.353·8-s + 2/3·9-s + 1.80·11-s + 0.534·14-s + 1/4·16-s − 0.471·18-s − 1.27·22-s − 1.66·23-s − 6/5·25-s − 0.377·28-s + 0.371·29-s − 0.176·32-s + 1/3·36-s − 2.30·37-s − 3.65·43-s + 0.904·44-s + 1.17·46-s − 3/7·49-s + 0.848·50-s − 0.274·53-s + 0.267·56-s − 0.262·58-s − 0.503·63-s + 1/8·64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 189728 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 189728 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(189728\)    =    \(2^{5} \cdot 7^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(12.0972\)
Root analytic conductor: \(1.86496\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 189728,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
7$C_2$ \( 1 + 2 T + p T^{2} \)
11$C_2$ \( 1 - 6 T + p T^{2} \)
good3$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 12 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
29$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + p T^{2} ) \)
31$C_2^2$ \( 1 + 60 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 28 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 - 36 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
61$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 + 8 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \)
73$C_2^2$ \( 1 + 16 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
97$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.018682906620481752014599990941, −8.349249841237217182629583731243, −8.143784062139351449482237870397, −7.40837288635255072786729733723, −6.84621102974705990857199295903, −6.59154190949514339166122867596, −6.20978114468454553535711113110, −5.56741659372590213451008161172, −4.81138687880925457081874221369, −4.09052251977104089331058220228, −3.61411922827203394131219212900, −3.16373906199664712104606801104, −1.80306662958575147659094810611, −1.64121605577949130548757500692, 0, 1.64121605577949130548757500692, 1.80306662958575147659094810611, 3.16373906199664712104606801104, 3.61411922827203394131219212900, 4.09052251977104089331058220228, 4.81138687880925457081874221369, 5.56741659372590213451008161172, 6.20978114468454553535711113110, 6.59154190949514339166122867596, 6.84621102974705990857199295903, 7.40837288635255072786729733723, 8.143784062139351449482237870397, 8.349249841237217182629583731243, 9.018682906620481752014599990941

Graph of the $Z$-function along the critical line