Properties

Label 4-189728-1.1-c1e2-0-20
Degree $4$
Conductor $189728$
Sign $-1$
Analytic cond. $12.0972$
Root an. cond. $1.86496$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·7-s + 4·9-s − 2·11-s − 6·25-s − 12·29-s − 6·37-s − 3·49-s − 18·53-s − 8·63-s + 2·67-s + 18·71-s + 4·77-s + 4·79-s + 7·81-s − 8·99-s − 22·107-s − 10·109-s − 7·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  − 0.755·7-s + 4/3·9-s − 0.603·11-s − 6/5·25-s − 2.22·29-s − 0.986·37-s − 3/7·49-s − 2.47·53-s − 1.00·63-s + 0.244·67-s + 2.13·71-s + 0.455·77-s + 0.450·79-s + 7/9·81-s − 0.804·99-s − 2.12·107-s − 0.957·109-s − 0.636·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 189728 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 189728 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(189728\)    =    \(2^{5} \cdot 7^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(12.0972\)
Root analytic conductor: \(1.86496\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 189728,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7$C_2$ \( 1 + 2 T + p T^{2} \)
11$C_2$ \( 1 + 2 T + p T^{2} \)
good3$C_2^2$ \( 1 - 4 T^{2} + p^{2} T^{4} \)
5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2^2$ \( 1 - 16 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 22 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 54 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 + 8 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
59$C_2^2$ \( 1 + 48 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 48 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 6 T + p T^{2} ) \)
73$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + p T^{2} ) \)
83$C_2^2$ \( 1 + 58 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.201817625931730631319801866861, −8.231653912108904502987139381029, −7.85913569995824361155632140743, −7.55872617707535023036071879644, −6.81021046990522680701216121139, −6.66875431209654207875868431102, −5.92283422217353581047274630014, −5.39740932329437370318814573989, −4.91206401871728991161913348225, −4.13475868340641532676358143122, −3.71743918797515679579241650492, −3.15247985928906233338458747554, −2.15777317103253069988565475152, −1.56577411252041071390112849468, 0, 1.56577411252041071390112849468, 2.15777317103253069988565475152, 3.15247985928906233338458747554, 3.71743918797515679579241650492, 4.13475868340641532676358143122, 4.91206401871728991161913348225, 5.39740932329437370318814573989, 5.92283422217353581047274630014, 6.66875431209654207875868431102, 6.81021046990522680701216121139, 7.55872617707535023036071879644, 7.85913569995824361155632140743, 8.231653912108904502987139381029, 9.201817625931730631319801866861

Graph of the $Z$-function along the critical line