Properties

Label 4-189728-1.1-c1e2-0-18
Degree $4$
Conductor $189728$
Sign $-1$
Analytic cond. $12.0972$
Root an. cond. $1.86496$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 3·5-s − 2·7-s + 8-s + 9-s − 3·10-s − 2·14-s + 16-s + 18-s + 2·19-s − 3·20-s − 25-s − 2·28-s + 32-s + 6·35-s + 36-s − 8·37-s + 2·38-s − 3·40-s − 10·43-s − 3·45-s − 3·49-s − 50-s + 18·53-s − 2·56-s − 2·63-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 1.34·5-s − 0.755·7-s + 0.353·8-s + 1/3·9-s − 0.948·10-s − 0.534·14-s + 1/4·16-s + 0.235·18-s + 0.458·19-s − 0.670·20-s − 1/5·25-s − 0.377·28-s + 0.176·32-s + 1.01·35-s + 1/6·36-s − 1.31·37-s + 0.324·38-s − 0.474·40-s − 1.52·43-s − 0.447·45-s − 3/7·49-s − 0.141·50-s + 2.47·53-s − 0.267·56-s − 0.251·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 189728 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 189728 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(189728\)    =    \(2^{5} \cdot 7^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(12.0972\)
Root analytic conductor: \(1.86496\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 189728,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 - T \)
7$C_2$ \( 1 + 2 T + p T^{2} \)
11$C_2$ \( 1 + p T^{2} \)
good3$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
5$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 3 T + p T^{2} ) \)
13$C_2^2$ \( 1 - 20 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
19$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
23$C_2^2$ \( 1 - 38 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 28 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$C_2^2$ \( 1 + 19 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2^2$ \( 1 - 86 T^{2} + p^{2} T^{4} \)
67$C_2^2$ \( 1 - 119 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 + 100 T^{2} + p^{2} T^{4} \)
73$C_2^2$ \( 1 - 11 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 + 8 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
83$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
97$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.691138987977261454872612422238, −8.439922803308813015646259564729, −7.78192261883320332308639784013, −7.40043628747859289771334596961, −6.85763174552959048181386789668, −6.68328742945276245081036246359, −5.72866037368370315951456694514, −5.50745823427368181481588864498, −4.69166193804206927533777331219, −4.19156990706852376440299622322, −3.66980787206907248985672520920, −3.29630460391738594172950738599, −2.54076353282660633066138649522, −1.48401118787311787717214151038, 0, 1.48401118787311787717214151038, 2.54076353282660633066138649522, 3.29630460391738594172950738599, 3.66980787206907248985672520920, 4.19156990706852376440299622322, 4.69166193804206927533777331219, 5.50745823427368181481588864498, 5.72866037368370315951456694514, 6.68328742945276245081036246359, 6.85763174552959048181386789668, 7.40043628747859289771334596961, 7.78192261883320332308639784013, 8.439922803308813015646259564729, 8.691138987977261454872612422238

Graph of the $Z$-function along the critical line