Properties

Label 4-189728-1.1-c1e2-0-15
Degree $4$
Conductor $189728$
Sign $-1$
Analytic cond. $12.0972$
Root an. cond. $1.86496$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s − 9-s + 2·11-s − 6·23-s − 5·25-s + 8·29-s + 14·37-s + 4·43-s + 9·49-s − 20·53-s + 4·63-s − 2·67-s − 2·71-s − 8·77-s − 4·79-s − 8·81-s − 2·99-s − 32·107-s + 4·109-s − 30·113-s + 3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + ⋯
L(s)  = 1  − 1.51·7-s − 1/3·9-s + 0.603·11-s − 1.25·23-s − 25-s + 1.48·29-s + 2.30·37-s + 0.609·43-s + 9/7·49-s − 2.74·53-s + 0.503·63-s − 0.244·67-s − 0.237·71-s − 0.911·77-s − 0.450·79-s − 8/9·81-s − 0.201·99-s − 3.09·107-s + 0.383·109-s − 2.82·113-s + 3/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 189728 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 189728 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(189728\)    =    \(2^{5} \cdot 7^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(12.0972\)
Root analytic conductor: \(1.86496\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 189728,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7$C_2$ \( 1 + 4 T + p T^{2} \)
11$C_1$ \( ( 1 - T )^{2} \)
good3$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
5$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
23$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
29$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
31$C_2^2$ \( 1 - 15 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2^2$ \( 1 + 62 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
59$C_2^2$ \( 1 + 25 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
79$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 106 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 157 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 115 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.133448943213416219981584405392, −8.311103393102123448321517998769, −7.972218436625198426991009353966, −7.54664461851502869881638278178, −6.73579323315780938126166238297, −6.40745311046018313656997838769, −6.07278572095843361061398546088, −5.64019672471834374599924808553, −4.74455528321738684868182201768, −4.14433958844327277498262470851, −3.74520522147862011695498567956, −2.89823787764158654024873948650, −2.55990091136445860728252253585, −1.35316500849431976367371795401, 0, 1.35316500849431976367371795401, 2.55990091136445860728252253585, 2.89823787764158654024873948650, 3.74520522147862011695498567956, 4.14433958844327277498262470851, 4.74455528321738684868182201768, 5.64019672471834374599924808553, 6.07278572095843361061398546088, 6.40745311046018313656997838769, 6.73579323315780938126166238297, 7.54664461851502869881638278178, 7.972218436625198426991009353966, 8.311103393102123448321517998769, 9.133448943213416219981584405392

Graph of the $Z$-function along the critical line