Properties

Label 4-189728-1.1-c1e2-0-1
Degree $4$
Conductor $189728$
Sign $1$
Analytic cond. $12.0972$
Root an. cond. $1.86496$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 3·5-s + 2·7-s − 8-s + 9-s + 3·10-s − 2·14-s + 16-s − 18-s − 2·19-s − 3·20-s − 25-s + 2·28-s − 32-s − 6·35-s + 36-s − 8·37-s + 2·38-s + 3·40-s + 10·43-s − 3·45-s − 3·49-s + 50-s + 18·53-s − 2·56-s + 2·63-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 1.34·5-s + 0.755·7-s − 0.353·8-s + 1/3·9-s + 0.948·10-s − 0.534·14-s + 1/4·16-s − 0.235·18-s − 0.458·19-s − 0.670·20-s − 1/5·25-s + 0.377·28-s − 0.176·32-s − 1.01·35-s + 1/6·36-s − 1.31·37-s + 0.324·38-s + 0.474·40-s + 1.52·43-s − 0.447·45-s − 3/7·49-s + 0.141·50-s + 2.47·53-s − 0.267·56-s + 0.251·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 189728 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 189728 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(189728\)    =    \(2^{5} \cdot 7^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(12.0972\)
Root analytic conductor: \(1.86496\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 189728,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8567179621\)
\(L(\frac12)\) \(\approx\) \(0.8567179621\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
7$C_2$ \( 1 - 2 T + p T^{2} \)
11$C_2$ \( 1 + p T^{2} \)
good3$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
5$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 3 T + p T^{2} ) \)
13$C_2^2$ \( 1 - 20 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
19$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
23$C_2^2$ \( 1 - 38 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 28 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$C_2^2$ \( 1 + 19 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
47$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2^2$ \( 1 - 86 T^{2} + p^{2} T^{4} \)
67$C_2^2$ \( 1 - 119 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 + 100 T^{2} + p^{2} T^{4} \)
73$C_2^2$ \( 1 - 11 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 - 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 9 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
97$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.010091074976382727914106250529, −8.631734377972301495125464310511, −8.048779860403113945093150558366, −7.80943641274813525276383170126, −7.41818618677176957057908440103, −6.88418165117100567790832155048, −6.39800033659735776883932213571, −5.65431080299592880787597045483, −5.12621462035049185692507860629, −4.45772074828101566475956002221, −3.89684374746954086118612834103, −3.52346778658138323025914241320, −2.48352131966472328989125101835, −1.81342033887732970486304429798, −0.67258321115543357013059760564, 0.67258321115543357013059760564, 1.81342033887732970486304429798, 2.48352131966472328989125101835, 3.52346778658138323025914241320, 3.89684374746954086118612834103, 4.45772074828101566475956002221, 5.12621462035049185692507860629, 5.65431080299592880787597045483, 6.39800033659735776883932213571, 6.88418165117100567790832155048, 7.41818618677176957057908440103, 7.80943641274813525276383170126, 8.048779860403113945093150558366, 8.631734377972301495125464310511, 9.010091074976382727914106250529

Graph of the $Z$-function along the critical line