Properties

Label 4-189728-1.1-c1e2-0-0
Degree $4$
Conductor $189728$
Sign $1$
Analytic cond. $12.0972$
Root an. cond. $1.86496$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 2·7-s − 8-s + 2·9-s − 5·11-s + 2·14-s + 16-s − 2·18-s + 5·22-s + 14·23-s − 6·25-s − 2·28-s − 9·29-s − 32-s + 2·36-s − 3·37-s + 9·43-s − 5·44-s − 14·46-s − 3·49-s + 6·50-s + 9·53-s + 2·56-s + 9·58-s − 4·63-s + 64-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.755·7-s − 0.353·8-s + 2/3·9-s − 1.50·11-s + 0.534·14-s + 1/4·16-s − 0.471·18-s + 1.06·22-s + 2.91·23-s − 6/5·25-s − 0.377·28-s − 1.67·29-s − 0.176·32-s + 1/3·36-s − 0.493·37-s + 1.37·43-s − 0.753·44-s − 2.06·46-s − 3/7·49-s + 0.848·50-s + 1.23·53-s + 0.267·56-s + 1.18·58-s − 0.503·63-s + 1/8·64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 189728 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 189728 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(189728\)    =    \(2^{5} \cdot 7^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(12.0972\)
Root analytic conductor: \(1.86496\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 189728,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8920653554\)
\(L(\frac12)\) \(\approx\) \(0.8920653554\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
7$C_2$ \( 1 + 2 T + p T^{2} \)
11$C_2$ \( 1 + 5 T + p T^{2} \)
good3$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
13$C_2^2$ \( 1 - 20 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 12 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
29$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 9 T + p T^{2} ) \)
31$C_2^2$ \( 1 - 17 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 61 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + T + p T^{2} ) \)
47$C_2^2$ \( 1 - 69 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
59$C_2^2$ \( 1 - 12 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 24 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \)
73$C_2^2$ \( 1 - 127 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 140 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 131 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 85 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.090733850380420084951653522737, −8.872767875370114843830577502336, −8.092918001546453973956682017131, −7.65587749866278308407010116721, −7.24486035699223528766675329636, −6.96353645848359802219899303546, −6.30170507405223240178984721566, −5.61042384745585683353798748324, −5.30267265140376940406222916927, −4.65175192499576485855840994116, −3.80922609847443711098275479928, −3.23546949660176218352964183948, −2.60623042047293500918612996904, −1.87727852621484565949770037151, −0.66958571965107075055353006393, 0.66958571965107075055353006393, 1.87727852621484565949770037151, 2.60623042047293500918612996904, 3.23546949660176218352964183948, 3.80922609847443711098275479928, 4.65175192499576485855840994116, 5.30267265140376940406222916927, 5.61042384745585683353798748324, 6.30170507405223240178984721566, 6.96353645848359802219899303546, 7.24486035699223528766675329636, 7.65587749866278308407010116721, 8.092918001546453973956682017131, 8.872767875370114843830577502336, 9.090733850380420084951653522737

Graph of the $Z$-function along the critical line