Properties

Label 4-1875e2-1.1-c1e2-0-3
Degree $4$
Conductor $3515625$
Sign $1$
Analytic cond. $224.159$
Root an. cond. $3.86936$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 2·3-s − 2·4-s + 2·6-s − 4·7-s − 3·8-s + 3·9-s − 6·11-s − 4·12-s − 2·13-s − 4·14-s + 16-s − 4·17-s + 3·18-s − 8·21-s − 6·22-s + 13·23-s − 6·24-s − 2·26-s + 4·27-s + 8·28-s − 5·29-s + 4·31-s + 2·32-s − 12·33-s − 4·34-s − 6·36-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.15·3-s − 4-s + 0.816·6-s − 1.51·7-s − 1.06·8-s + 9-s − 1.80·11-s − 1.15·12-s − 0.554·13-s − 1.06·14-s + 1/4·16-s − 0.970·17-s + 0.707·18-s − 1.74·21-s − 1.27·22-s + 2.71·23-s − 1.22·24-s − 0.392·26-s + 0.769·27-s + 1.51·28-s − 0.928·29-s + 0.718·31-s + 0.353·32-s − 2.08·33-s − 0.685·34-s − 36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3515625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3515625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3515625\)    =    \(3^{2} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(224.159\)
Root analytic conductor: \(3.86936\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 3515625,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( ( 1 - T )^{2} \)
5 \( 1 \)
good2$D_{4}$ \( 1 - T + 3 T^{2} - p T^{3} + p^{2} T^{4} \)
7$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
17$D_{4}$ \( 1 + 4 T + 33 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 7 T^{2} + p^{2} T^{4} \)
23$D_{4}$ \( 1 - 13 T + 87 T^{2} - 13 p T^{3} + p^{2} T^{4} \)
29$D_{4}$ \( 1 + 5 T + 63 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 - 4 T + 21 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
41$C_4$ \( 1 + 21 T + 191 T^{2} + 21 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 17 T + 157 T^{2} + 17 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 + 14 T + 138 T^{2} + 14 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 - 18 T + 182 T^{2} - 18 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 + 10 T + 63 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 - 4 T + 81 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 + 4 T + 13 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 - 9 T + 131 T^{2} - 9 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 - 18 T + 182 T^{2} - 18 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 + 25 T + 303 T^{2} + 25 p T^{3} + p^{2} T^{4} \)
83$C_2$ \( ( 1 - 9 T + p T^{2} )^{2} \)
89$C_2^2$ \( 1 + 53 T^{2} + p^{2} T^{4} \)
97$D_{4}$ \( 1 - T + 183 T^{2} - p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.941544561304888954909567596488, −8.709866378813517048946307232499, −8.239439401933478671742089111929, −8.139730978028488726897058985380, −7.45412558900011014759405657885, −6.81692100854864692449781172805, −6.72668969607071447382370431822, −6.57252330089845428474752477339, −5.36004164896512178376169438276, −5.29858645072028312578267372402, −4.92915962404746552943019094001, −4.69030035358369051712084731662, −3.83358179241607855263554064043, −3.52621189195649390647901322075, −3.02564765773836666571548989093, −2.95888308481646293476430397970, −2.24143243840522682238543152963, −1.49019527194744572704569608914, 0, 0, 1.49019527194744572704569608914, 2.24143243840522682238543152963, 2.95888308481646293476430397970, 3.02564765773836666571548989093, 3.52621189195649390647901322075, 3.83358179241607855263554064043, 4.69030035358369051712084731662, 4.92915962404746552943019094001, 5.29858645072028312578267372402, 5.36004164896512178376169438276, 6.57252330089845428474752477339, 6.72668969607071447382370431822, 6.81692100854864692449781172805, 7.45412558900011014759405657885, 8.139730978028488726897058985380, 8.239439401933478671742089111929, 8.709866378813517048946307232499, 8.941544561304888954909567596488

Graph of the $Z$-function along the critical line