Properties

Label 4-1872e2-1.1-c1e2-0-24
Degree $4$
Conductor $3504384$
Sign $1$
Analytic cond. $223.442$
Root an. cond. $3.86626$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 4·13-s + 2·25-s + 8·29-s − 14·37-s + 18·41-s + 28·53-s + 20·61-s − 8·65-s + 10·73-s + 26·89-s + 26·97-s + 26·109-s − 32·113-s − 10·125-s + 127-s + 131-s + 137-s + 139-s − 16·145-s + 149-s + 151-s + 157-s + 163-s + 167-s + 3·169-s + 173-s + ⋯
L(s)  = 1  − 0.894·5-s + 1.10·13-s + 2/5·25-s + 1.48·29-s − 2.30·37-s + 2.81·41-s + 3.84·53-s + 2.56·61-s − 0.992·65-s + 1.17·73-s + 2.75·89-s + 2.63·97-s + 2.49·109-s − 3.01·113-s − 0.894·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 1.32·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 3/13·169-s + 0.0760·173-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3504384 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3504384 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3504384\)    =    \(2^{8} \cdot 3^{4} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(223.442\)
Root analytic conductor: \(3.86626\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 3504384,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.413833683\)
\(L(\frac12)\) \(\approx\) \(2.413833683\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13$C_2$ \( 1 - 4 T + p T^{2} \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
7$C_2^2$ \( 1 + p^{2} T^{4} \)
11$C_2^2$ \( 1 + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
19$C_2^2$ \( 1 + p^{2} T^{4} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 + p^{2} T^{4} \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 8 T + p T^{2} ) \)
43$C_2$ \( ( 1 + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 + p^{2} T^{4} \)
61$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 + p^{2} T^{4} \)
71$C_2^2$ \( 1 + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
79$C_2$ \( ( 1 - p T^{2} )^{2} \)
83$C_2^2$ \( 1 + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 - 10 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 - 8 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.098562901043967017202881254052, −9.085089984727315755970237894229, −8.497083101532657821282064117664, −8.443559099348125638355445623057, −7.86515411811517607008775054986, −7.49070219768878232430988026684, −7.03217634645471387812432730118, −6.80371590250706096906197427978, −6.20526518342110784171430923950, −5.92410276583179175432631810681, −5.25608411242825586970846982605, −5.09767789156791658935759494020, −4.31092810547757669399368250176, −4.07618261650601845342646550122, −3.52936919079648674560508386667, −3.33485695169846444418350429795, −2.32253219099474182216174591868, −2.24417931112986669965195765064, −0.982191842588274532153576588693, −0.75194921336979352191172044724, 0.75194921336979352191172044724, 0.982191842588274532153576588693, 2.24417931112986669965195765064, 2.32253219099474182216174591868, 3.33485695169846444418350429795, 3.52936919079648674560508386667, 4.07618261650601845342646550122, 4.31092810547757669399368250176, 5.09767789156791658935759494020, 5.25608411242825586970846982605, 5.92410276583179175432631810681, 6.20526518342110784171430923950, 6.80371590250706096906197427978, 7.03217634645471387812432730118, 7.49070219768878232430988026684, 7.86515411811517607008775054986, 8.443559099348125638355445623057, 8.497083101532657821282064117664, 9.085089984727315755970237894229, 9.098562901043967017202881254052

Graph of the $Z$-function along the critical line