Properties

Label 4-1850e2-1.1-c1e2-0-6
Degree $4$
Conductor $3422500$
Sign $1$
Analytic cond. $218.221$
Root an. cond. $3.84347$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s − 10·7-s − 6·9-s + 6·11-s + 16-s + 10·28-s + 6·36-s − 2·37-s + 10·41-s − 6·44-s + 16·47-s + 61·49-s + 18·53-s + 60·63-s − 64-s − 4·67-s + 4·71-s − 12·73-s − 60·77-s + 27·81-s + 24·83-s − 36·99-s + 16·101-s + 28·107-s − 10·112-s + 5·121-s + 127-s + ⋯
L(s)  = 1  − 1/2·4-s − 3.77·7-s − 2·9-s + 1.80·11-s + 1/4·16-s + 1.88·28-s + 36-s − 0.328·37-s + 1.56·41-s − 0.904·44-s + 2.33·47-s + 61/7·49-s + 2.47·53-s + 7.55·63-s − 1/8·64-s − 0.488·67-s + 0.474·71-s − 1.40·73-s − 6.83·77-s + 3·81-s + 2.63·83-s − 3.61·99-s + 1.59·101-s + 2.70·107-s − 0.944·112-s + 5/11·121-s + 0.0887·127-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3422500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3422500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3422500\)    =    \(2^{2} \cdot 5^{4} \cdot 37^{2}\)
Sign: $1$
Analytic conductor: \(218.221\)
Root analytic conductor: \(3.84347\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 3422500,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8639565017\)
\(L(\frac12)\) \(\approx\) \(0.8639565017\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T^{2} \)
5 \( 1 \)
37$C_2$ \( 1 + 2 T + p T^{2} \)
good3$C_2$ \( ( 1 + p T^{2} )^{2} \)
7$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
13$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 33 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 33 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 - 61 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 + 35 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 9 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 73 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
89$C_2^2$ \( 1 - 162 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 73 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.197123183672336145875615392950, −9.097026969224528464996828387806, −8.808193409323573546882328123944, −8.783137616420703307066309163680, −7.79270653217172769924317590940, −7.35003113111458534954330187014, −6.97175650388843926667013306918, −6.48226409324720804246802830265, −6.24801332737327098645897784963, −5.90017560759772518586108884127, −5.75767910357374920338086374482, −5.14118629331863442186104103860, −4.18729521393121976565542039002, −3.88815196190527950712262542963, −3.52573128384839910438874423532, −3.24171716526628393697770844992, −2.49763506358573067281624642719, −2.49182816879483593459715922638, −0.804147687839415326368442514654, −0.49684841120786985915588843231, 0.49684841120786985915588843231, 0.804147687839415326368442514654, 2.49182816879483593459715922638, 2.49763506358573067281624642719, 3.24171716526628393697770844992, 3.52573128384839910438874423532, 3.88815196190527950712262542963, 4.18729521393121976565542039002, 5.14118629331863442186104103860, 5.75767910357374920338086374482, 5.90017560759772518586108884127, 6.24801332737327098645897784963, 6.48226409324720804246802830265, 6.97175650388843926667013306918, 7.35003113111458534954330187014, 7.79270653217172769924317590940, 8.783137616420703307066309163680, 8.808193409323573546882328123944, 9.097026969224528464996828387806, 9.197123183672336145875615392950

Graph of the $Z$-function along the critical line