Properties

Label 4-1850e2-1.1-c1e2-0-4
Degree $4$
Conductor $3422500$
Sign $1$
Analytic cond. $218.221$
Root an. cond. $3.84347$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s + 2·9-s + 16-s − 4·19-s − 12·29-s − 20·31-s − 2·36-s − 12·41-s + 10·49-s + 12·59-s − 20·61-s − 64-s + 4·76-s + 20·79-s − 5·81-s + 12·89-s + 36·101-s − 28·109-s + 12·116-s − 22·121-s + 20·124-s + 127-s + 131-s + 137-s + 139-s + 2·144-s + 149-s + ⋯
L(s)  = 1  − 1/2·4-s + 2/3·9-s + 1/4·16-s − 0.917·19-s − 2.22·29-s − 3.59·31-s − 1/3·36-s − 1.87·41-s + 10/7·49-s + 1.56·59-s − 2.56·61-s − 1/8·64-s + 0.458·76-s + 2.25·79-s − 5/9·81-s + 1.27·89-s + 3.58·101-s − 2.68·109-s + 1.11·116-s − 2·121-s + 1.79·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 1/6·144-s + 0.0819·149-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3422500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3422500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3422500\)    =    \(2^{2} \cdot 5^{4} \cdot 37^{2}\)
Sign: $1$
Analytic conductor: \(218.221\)
Root analytic conductor: \(3.84347\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 3422500,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7772764020\)
\(L(\frac12)\) \(\approx\) \(0.7772764020\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T^{2} \)
5 \( 1 \)
37$C_2$ \( 1 + T^{2} \)
good3$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - p T^{2} )^{2} \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 58 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 142 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 - 190 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.613282987381695700507569608430, −8.974489503452485386829350196393, −8.870251897658669245079559945803, −8.360412583388371708771774049874, −7.64457002103717533176717913920, −7.48979139091696947488423442883, −7.32800026623228234537959338868, −6.51805210839746098798524053001, −6.45158171289118076398077490958, −5.60196014278191689248707672053, −5.44072145555373755610138290620, −5.09900200147427341179760128723, −4.43145519543671797565592333579, −4.00598051170431795522349557015, −3.53543313057190371931000784845, −3.44519190011522939853774918083, −2.33691944417049711669645687442, −1.90821831536122576289053640466, −1.50113692348340565457121191534, −0.32038122832832343279610805974, 0.32038122832832343279610805974, 1.50113692348340565457121191534, 1.90821831536122576289053640466, 2.33691944417049711669645687442, 3.44519190011522939853774918083, 3.53543313057190371931000784845, 4.00598051170431795522349557015, 4.43145519543671797565592333579, 5.09900200147427341179760128723, 5.44072145555373755610138290620, 5.60196014278191689248707672053, 6.45158171289118076398077490958, 6.51805210839746098798524053001, 7.32800026623228234537959338868, 7.48979139091696947488423442883, 7.64457002103717533176717913920, 8.360412583388371708771774049874, 8.870251897658669245079559945803, 8.974489503452485386829350196393, 9.613282987381695700507569608430

Graph of the $Z$-function along the critical line