L(s) = 1 | + 2·2-s − 3·3-s + 3·4-s − 6·6-s − 2·7-s + 4·8-s + 4·9-s − 11-s − 9·12-s + 13-s − 4·14-s + 5·16-s + 12·17-s + 8·18-s + 4·19-s + 6·21-s − 2·22-s + 3·23-s − 12·24-s + 2·26-s − 6·27-s − 6·28-s + 3·29-s + 3·31-s + 6·32-s + 3·33-s + 24·34-s + ⋯ |
L(s) = 1 | + 1.41·2-s − 1.73·3-s + 3/2·4-s − 2.44·6-s − 0.755·7-s + 1.41·8-s + 4/3·9-s − 0.301·11-s − 2.59·12-s + 0.277·13-s − 1.06·14-s + 5/4·16-s + 2.91·17-s + 1.88·18-s + 0.917·19-s + 1.30·21-s − 0.426·22-s + 0.625·23-s − 2.44·24-s + 0.392·26-s − 1.15·27-s − 1.13·28-s + 0.557·29-s + 0.538·31-s + 1.06·32-s + 0.522·33-s + 4.11·34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3422500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3422500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.940028090\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.940028090\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | $C_1$ | \( ( 1 - T )^{2} \) |
| 5 | | \( 1 \) |
| 37 | $C_1$ | \( ( 1 + T )^{2} \) |
good | 3 | $C_4$ | \( 1 + p T + 5 T^{2} + p^{2} T^{3} + p^{2} T^{4} \) |
| 7 | $C_2^2$ | \( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \) |
| 11 | $D_{4}$ | \( 1 + T + 19 T^{2} + p T^{3} + p^{2} T^{4} \) |
| 13 | $D_{4}$ | \( 1 - T + 23 T^{2} - p T^{3} + p^{2} T^{4} \) |
| 17 | $C_2$ | \( ( 1 - 6 T + p T^{2} )^{2} \) |
| 19 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
| 23 | $D_{4}$ | \( 1 - 3 T + 19 T^{2} - 3 p T^{3} + p^{2} T^{4} \) |
| 29 | $C_4$ | \( 1 - 3 T + 31 T^{2} - 3 p T^{3} + p^{2} T^{4} \) |
| 31 | $D_{4}$ | \( 1 - 3 T + 61 T^{2} - 3 p T^{3} + p^{2} T^{4} \) |
| 41 | $D_{4}$ | \( 1 - 9 T + 73 T^{2} - 9 p T^{3} + p^{2} T^{4} \) |
| 43 | $D_{4}$ | \( 1 - 6 T + 82 T^{2} - 6 p T^{3} + p^{2} T^{4} \) |
| 47 | $D_{4}$ | \( 1 + 2 T + 82 T^{2} + 2 p T^{3} + p^{2} T^{4} \) |
| 53 | $C_2$ | \( ( 1 - 6 T + p T^{2} )^{2} \) |
| 59 | $D_{4}$ | \( 1 - 14 T + 154 T^{2} - 14 p T^{3} + p^{2} T^{4} \) |
| 61 | $D_{4}$ | \( 1 + 3 T + 43 T^{2} + 3 p T^{3} + p^{2} T^{4} \) |
| 67 | $D_{4}$ | \( 1 + 11 T + 83 T^{2} + 11 p T^{3} + p^{2} T^{4} \) |
| 71 | $C_2$ | \( ( 1 - 6 T + p T^{2} )^{2} \) |
| 73 | $D_{4}$ | \( 1 - 21 T + 253 T^{2} - 21 p T^{3} + p^{2} T^{4} \) |
| 79 | $D_{4}$ | \( 1 + 7 T + 11 T^{2} + 7 p T^{3} + p^{2} T^{4} \) |
| 83 | $D_{4}$ | \( 1 + 20 T + 214 T^{2} + 20 p T^{3} + p^{2} T^{4} \) |
| 89 | $D_{4}$ | \( 1 + 4 T + 130 T^{2} + 4 p T^{3} + p^{2} T^{4} \) |
| 97 | $D_{4}$ | \( 1 - 4 T - 10 T^{2} - 4 p T^{3} + p^{2} T^{4} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.718053053128716410831979470838, −9.236741405170610192710233211038, −8.565804084941438614456856665404, −8.017264901818200086858293348505, −7.50572484000297588098484172036, −7.47859109841786056540465647586, −6.67180824447499145122198324379, −6.65848133781939143594087281410, −5.99754407598893985450833549105, −5.53317025922360171796568306061, −5.47882644265647658275526629298, −5.38511586585012385601700937987, −4.62675218985074459374435324413, −4.10073678074786915873811252591, −3.71827902306834164516962095765, −3.05784995778967491571105258752, −2.95939456595408408469745601679, −2.06485302664892115251413844573, −0.973898694541845788112716551287, −0.878006943511392673067401385117,
0.878006943511392673067401385117, 0.973898694541845788112716551287, 2.06485302664892115251413844573, 2.95939456595408408469745601679, 3.05784995778967491571105258752, 3.71827902306834164516962095765, 4.10073678074786915873811252591, 4.62675218985074459374435324413, 5.38511586585012385601700937987, 5.47882644265647658275526629298, 5.53317025922360171796568306061, 5.99754407598893985450833549105, 6.65848133781939143594087281410, 6.67180824447499145122198324379, 7.47859109841786056540465647586, 7.50572484000297588098484172036, 8.017264901818200086858293348505, 8.565804084941438614456856665404, 9.236741405170610192710233211038, 9.718053053128716410831979470838