L(s) = 1 | − 6·7-s − 2·9-s + 10·17-s − 9·25-s + 16·31-s + 12·41-s − 18·47-s + 13·49-s + 12·63-s − 12·71-s − 30·73-s − 8·79-s − 5·81-s + 32·97-s − 28·103-s + 4·113-s − 60·119-s − 13·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 20·153-s + 157-s + 163-s + ⋯ |
L(s) = 1 | − 2.26·7-s − 2/3·9-s + 2.42·17-s − 9/5·25-s + 2.87·31-s + 1.87·41-s − 2.62·47-s + 13/7·49-s + 1.51·63-s − 1.42·71-s − 3.51·73-s − 0.900·79-s − 5/9·81-s + 3.24·97-s − 2.75·103-s + 0.376·113-s − 5.50·119-s − 1.18·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 1.61·153-s + 0.0798·157-s + 0.0783·163-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 184832 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 184832 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 19 | $C_1$$\times$$C_1$ | \( ( 1 - T )( 1 + T ) \) |
good | 3 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 5 | $C_2$ | \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \) |
| 7 | $C_2$ | \( ( 1 + 3 T + p T^{2} )^{2} \) |
| 11 | $C_2$ | \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \) |
| 13 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 17 | $C_2$ | \( ( 1 - 5 T + p T^{2} )^{2} \) |
| 23 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 29 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 31 | $C_2$ | \( ( 1 - 8 T + p T^{2} )^{2} \) |
| 37 | $C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 41 | $C_2$ | \( ( 1 - 6 T + p T^{2} )^{2} \) |
| 43 | $C_2$ | \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \) |
| 47 | $C_2$ | \( ( 1 + 9 T + p T^{2} )^{2} \) |
| 53 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 59 | $C_2$ | \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \) |
| 61 | $C_2$ | \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \) |
| 67 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 71 | $C_2$ | \( ( 1 + 6 T + p T^{2} )^{2} \) |
| 73 | $C_2$ | \( ( 1 + 15 T + p T^{2} )^{2} \) |
| 79 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) |
| 83 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 89 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 97 | $C_2$ | \( ( 1 - 16 T + p T^{2} )^{2} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.075343088620985226404492276671, −8.186562113914066026677579677805, −8.148422841499315186159351254036, −7.43537131861627444263317650332, −6.97775492717497319205239152750, −6.20879084669067007942487517486, −5.89904763388088518363904025264, −5.89152757780490661000300260672, −4.85172758929064856672456822692, −4.19084046620099313866498183608, −3.41145508666670040670114085640, −3.08915058635532111035563541614, −2.67622771685970545269516699451, −1.26674131115266326801058270565, 0,
1.26674131115266326801058270565, 2.67622771685970545269516699451, 3.08915058635532111035563541614, 3.41145508666670040670114085640, 4.19084046620099313866498183608, 4.85172758929064856672456822692, 5.89152757780490661000300260672, 5.89904763388088518363904025264, 6.20879084669067007942487517486, 6.97775492717497319205239152750, 7.43537131861627444263317650332, 8.148422841499315186159351254036, 8.186562113914066026677579677805, 9.075343088620985226404492276671