Properties

Label 4-183e2-1.1-c0e2-0-0
Degree $4$
Conductor $33489$
Sign $1$
Analytic cond. $0.00834096$
Root an. cond. $0.302206$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 3·9-s − 16-s + 2·25-s − 4·27-s + 2·48-s + 2·49-s − 2·61-s − 4·73-s − 4·75-s + 5·81-s − 4·109-s + 127-s + 131-s + 137-s + 139-s − 3·144-s − 4·147-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2·169-s + 173-s + 179-s + 181-s + ⋯
L(s)  = 1  − 2·3-s + 3·9-s − 16-s + 2·25-s − 4·27-s + 2·48-s + 2·49-s − 2·61-s − 4·73-s − 4·75-s + 5·81-s − 4·109-s + 127-s + 131-s + 137-s + 139-s − 3·144-s − 4·147-s + 149-s + 151-s + 157-s + 163-s + 167-s − 2·169-s + 173-s + 179-s + 181-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 33489 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33489 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(33489\)    =    \(3^{2} \cdot 61^{2}\)
Sign: $1$
Analytic conductor: \(0.00834096\)
Root analytic conductor: \(0.302206\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 33489,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.2753596510\)
\(L(\frac12)\) \(\approx\) \(0.2753596510\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( ( 1 + T )^{2} \)
61$C_1$ \( ( 1 + T )^{2} \)
good2$C_2^2$ \( 1 + T^{4} \)
5$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
7$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
11$C_2^2$ \( 1 + T^{4} \)
13$C_2$ \( ( 1 + T^{2} )^{2} \)
17$C_2^2$ \( 1 + T^{4} \)
19$C_2$ \( ( 1 + T^{2} )^{2} \)
23$C_2^2$ \( 1 + T^{4} \)
29$C_2^2$ \( 1 + T^{4} \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
37$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
41$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
43$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
53$C_2^2$ \( 1 + T^{4} \)
59$C_2^2$ \( 1 + T^{4} \)
67$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
71$C_2^2$ \( 1 + T^{4} \)
73$C_1$ \( ( 1 + T )^{4} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
89$C_2^2$ \( 1 + T^{4} \)
97$C_2$ \( ( 1 + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.03631595072602093843039961165, −12.38059608154886510838514855049, −12.11953725416449572094281884343, −11.68114626871187900433581112301, −11.11795954886805531459029265260, −10.70410017445897266800867626914, −10.43925115117384294982861425918, −9.867954567247524654059244183534, −9.073426690220356819787539988198, −8.857296015536400237529541299715, −7.78344977354955596349576291347, −7.18646828509669977662916339740, −6.86277982873809585884880489537, −6.26991446017201404893330014309, −5.71742979439727236139789333984, −5.12579395998211793256364559476, −4.53250682818961780933031255608, −4.09616643505907531739897542113, −2.79385169794189637840328832684, −1.40925262260813712819147565752, 1.40925262260813712819147565752, 2.79385169794189637840328832684, 4.09616643505907531739897542113, 4.53250682818961780933031255608, 5.12579395998211793256364559476, 5.71742979439727236139789333984, 6.26991446017201404893330014309, 6.86277982873809585884880489537, 7.18646828509669977662916339740, 7.78344977354955596349576291347, 8.857296015536400237529541299715, 9.073426690220356819787539988198, 9.867954567247524654059244183534, 10.43925115117384294982861425918, 10.70410017445897266800867626914, 11.11795954886805531459029265260, 11.68114626871187900433581112301, 12.11953725416449572094281884343, 12.38059608154886510838514855049, 13.03631595072602093843039961165

Graph of the $Z$-function along the critical line