Properties

Label 4-1815e2-1.1-c1e2-0-19
Degree $4$
Conductor $3294225$
Sign $-1$
Analytic cond. $210.042$
Root an. cond. $3.80694$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s − 2·5-s + 9-s − 3·16-s + 2·20-s − 25-s − 36-s − 2·45-s − 6·49-s + 7·64-s − 16·71-s + 6·80-s + 81-s + 28·89-s + 100-s + 12·125-s + 127-s + 131-s + 137-s + 139-s − 3·144-s + 149-s + 151-s + 157-s + 163-s + 167-s + 26·169-s + ⋯
L(s)  = 1  − 1/2·4-s − 0.894·5-s + 1/3·9-s − 3/4·16-s + 0.447·20-s − 1/5·25-s − 1/6·36-s − 0.298·45-s − 6/7·49-s + 7/8·64-s − 1.89·71-s + 0.670·80-s + 1/9·81-s + 2.96·89-s + 1/10·100-s + 1.07·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 1/4·144-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 2·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3294225 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3294225 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3294225\)    =    \(3^{2} \cdot 5^{2} \cdot 11^{4}\)
Sign: $-1$
Analytic conductor: \(210.042\)
Root analytic conductor: \(3.80694\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 3294225,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
5$C_2$ \( 1 + 2 T + p T^{2} \)
11 \( 1 \)
good2$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - p T^{2} )^{2} \)
17$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2^2$ \( 1 + 38 T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2^2$ \( 1 + 62 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 66 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2^2$ \( 1 + 42 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
71$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 66 T^{2} + p^{2} T^{4} \)
79$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 - 86 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.37502840345174702922276298069, −6.97793516144482552722802579390, −6.45827470460787329312486520040, −6.18522656249781606647050153553, −5.54486807324915564164405031200, −5.13498488652535083964987208368, −4.59835288593959400153873761477, −4.36454563276548543570477802654, −3.91214177750804457483802607233, −3.39305197403574913212767194111, −2.97484146721407084361984934359, −2.21344623561431793817934308120, −1.69513758921887876847281638863, −0.78150154220866768360452665462, 0, 0.78150154220866768360452665462, 1.69513758921887876847281638863, 2.21344623561431793817934308120, 2.97484146721407084361984934359, 3.39305197403574913212767194111, 3.91214177750804457483802607233, 4.36454563276548543570477802654, 4.59835288593959400153873761477, 5.13498488652535083964987208368, 5.54486807324915564164405031200, 6.18522656249781606647050153553, 6.45827470460787329312486520040, 6.97793516144482552722802579390, 7.37502840345174702922276298069

Graph of the $Z$-function along the critical line