Properties

Label 4-1813-1.1-c1e2-0-0
Degree $4$
Conductor $1813$
Sign $-1$
Analytic cond. $0.115598$
Root an. cond. $0.583093$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 3-s − 2·5-s + 2·6-s − 4·7-s + 4·8-s − 2·9-s + 4·10-s + 11-s − 13-s + 8·14-s + 2·15-s − 4·16-s + 4·18-s + 19-s + 4·21-s − 2·22-s − 23-s − 4·24-s + 2·26-s + 2·27-s − 6·29-s − 4·30-s + 3·31-s − 33-s + 8·35-s − 11·37-s + ⋯
L(s)  = 1  − 1.41·2-s − 0.577·3-s − 0.894·5-s + 0.816·6-s − 1.51·7-s + 1.41·8-s − 2/3·9-s + 1.26·10-s + 0.301·11-s − 0.277·13-s + 2.13·14-s + 0.516·15-s − 16-s + 0.942·18-s + 0.229·19-s + 0.872·21-s − 0.426·22-s − 0.208·23-s − 0.816·24-s + 0.392·26-s + 0.384·27-s − 1.11·29-s − 0.730·30-s + 0.538·31-s − 0.174·33-s + 1.35·35-s − 1.80·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1813 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1813 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1813\)    =    \(7^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(0.115598\)
Root analytic conductor: \(0.583093\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 1813,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad7$C_2$ \( 1 + 4 T + p T^{2} \)
37$C_1$$\times$$C_2$ \( ( 1 + T )( 1 + 10 T + p T^{2} ) \)
good2$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + p T + p T^{2} ) \)
3$D_{4}$ \( 1 + T + p T^{2} + p T^{3} + p^{2} T^{4} \)
5$D_{4}$ \( 1 + 2 T + 4 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
11$D_{4}$ \( 1 - T + T^{2} - p T^{3} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + T - 12 T^{2} + p T^{3} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 22 T^{2} + p^{2} T^{4} \)
19$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
23$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
29$D_{4}$ \( 1 + 6 T + 40 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + T + p T^{2} ) \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
43$D_{4}$ \( 1 + 8 T + 36 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 - 9 T + 106 T^{2} - 9 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 + 2 T + 10 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 + 10 T + 70 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 + 10 T + 120 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 + 11 T + 114 T^{2} + 11 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 - 3 T - 23 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 + 3 T - 5 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 9 T + 28 T^{2} - 9 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 3 T - 47 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 - T + 52 T^{2} - p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 16 T + 216 T^{2} + 16 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.3037507485, −18.7836615640, −18.2052809452, −17.7117129448, −17.0312131871, −16.8581567364, −16.3258496789, −15.6372193758, −15.2511430739, −14.2355808567, −13.7169857556, −13.0679309715, −12.2570319287, −11.9501410659, −11.0639650707, −10.4722640146, −9.83202167099, −9.14166780283, −8.90953062472, −7.91852369734, −7.39965689908, −6.43061601210, −5.59367240785, −4.36516732197, −3.31536628562, 0, 3.31536628562, 4.36516732197, 5.59367240785, 6.43061601210, 7.39965689908, 7.91852369734, 8.90953062472, 9.14166780283, 9.83202167099, 10.4722640146, 11.0639650707, 11.9501410659, 12.2570319287, 13.0679309715, 13.7169857556, 14.2355808567, 15.2511430739, 15.6372193758, 16.3258496789, 16.8581567364, 17.0312131871, 17.7117129448, 18.2052809452, 18.7836615640, 19.3037507485

Graph of the $Z$-function along the critical line