Properties

Label 4-180e2-1.1-c1e2-0-9
Degree $4$
Conductor $32400$
Sign $1$
Analytic cond. $2.06585$
Root an. cond. $1.19887$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·4-s + 4·5-s + 8·10-s − 2·13-s − 4·16-s − 6·17-s + 8·20-s + 11·25-s − 4·26-s − 8·32-s − 12·34-s − 14·37-s + 16·41-s + 22·50-s − 4·52-s − 18·53-s + 24·61-s − 8·64-s − 8·65-s − 12·68-s − 22·73-s − 28·74-s − 16·80-s + 32·82-s − 24·85-s + 26·97-s + ⋯
L(s)  = 1  + 1.41·2-s + 4-s + 1.78·5-s + 2.52·10-s − 0.554·13-s − 16-s − 1.45·17-s + 1.78·20-s + 11/5·25-s − 0.784·26-s − 1.41·32-s − 2.05·34-s − 2.30·37-s + 2.49·41-s + 3.11·50-s − 0.554·52-s − 2.47·53-s + 3.07·61-s − 64-s − 0.992·65-s − 1.45·68-s − 2.57·73-s − 3.25·74-s − 1.78·80-s + 3.53·82-s − 2.60·85-s + 2.63·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 32400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 32400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(32400\)    =    \(2^{4} \cdot 3^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(2.06585\)
Root analytic conductor: \(1.19887\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 32400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.065142573\)
\(L(\frac12)\) \(\approx\) \(3.065142573\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - p T + p T^{2} \)
3 \( 1 \)
5$C_2$ \( 1 - 4 T + p T^{2} \)
good7$C_2^2$ \( 1 + p^{2} T^{4} \)
11$C_2$ \( ( 1 - p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2^2$ \( 1 + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
31$C_2$ \( ( 1 - p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 + p^{2} T^{4} \)
47$C_2^2$ \( 1 + p^{2} T^{4} \)
53$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 + p^{2} T^{4} \)
71$C_2$ \( ( 1 - p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2^2$ \( 1 + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 - 8 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.99030959944853555289996114351, −12.69794170135484687304413895935, −12.18370566131111394162278799771, −11.49029736143249133136551533241, −11.02191249766749448320241458224, −10.57247539133846836722364304916, −9.870320758800327287005653304896, −9.555475699564994929062637634935, −8.758274899783008978368742428221, −8.739973580780035675871218399526, −7.46075314863325815153746791658, −6.92631001022100348507174626909, −6.37224151113724282744104274704, −5.96147912093056451593267216430, −5.36059816736116392293212599542, −4.84360594018672742592642180007, −4.29322535774556801723332538839, −3.29130633826925225407131880272, −2.48247368747939277244217051032, −1.92433628645762413952817508959, 1.92433628645762413952817508959, 2.48247368747939277244217051032, 3.29130633826925225407131880272, 4.29322535774556801723332538839, 4.84360594018672742592642180007, 5.36059816736116392293212599542, 5.96147912093056451593267216430, 6.37224151113724282744104274704, 6.92631001022100348507174626909, 7.46075314863325815153746791658, 8.739973580780035675871218399526, 8.758274899783008978368742428221, 9.555475699564994929062637634935, 9.870320758800327287005653304896, 10.57247539133846836722364304916, 11.02191249766749448320241458224, 11.49029736143249133136551533241, 12.18370566131111394162278799771, 12.69794170135484687304413895935, 12.99030959944853555289996114351

Graph of the $Z$-function along the critical line