Properties

Label 4-180e2-1.1-c1e2-0-8
Degree $4$
Conductor $32400$
Sign $-1$
Analytic cond. $2.06585$
Root an. cond. $1.19887$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5·7-s + 9-s + 2·11-s + 13-s − 2·17-s − 19-s + 5·21-s − 10·23-s + 25-s − 27-s − 4·31-s − 2·33-s − 37-s − 39-s − 8·41-s − 4·43-s + 11·49-s + 2·51-s − 4·53-s + 57-s + 8·59-s + 5·61-s − 5·63-s + 5·67-s + 10·69-s − 22·71-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.88·7-s + 1/3·9-s + 0.603·11-s + 0.277·13-s − 0.485·17-s − 0.229·19-s + 1.09·21-s − 2.08·23-s + 1/5·25-s − 0.192·27-s − 0.718·31-s − 0.348·33-s − 0.164·37-s − 0.160·39-s − 1.24·41-s − 0.609·43-s + 11/7·49-s + 0.280·51-s − 0.549·53-s + 0.132·57-s + 1.04·59-s + 0.640·61-s − 0.629·63-s + 0.610·67-s + 1.20·69-s − 2.61·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 32400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 32400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(32400\)    =    \(2^{4} \cdot 3^{4} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(2.06585\)
Root analytic conductor: \(1.19887\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 32400,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( 1 + T \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good7$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 5 T + p T^{2} ) \)
11$C_2^2$ \( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - T - 12 T^{2} - p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 + 2 T - 6 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 + T + 10 T^{2} + p T^{3} + p^{2} T^{4} \)
23$D_{4}$ \( 1 + 10 T + 66 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
31$D_{4}$ \( 1 + 4 T + 6 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 + T + 16 T^{2} + p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 + 8 T + 54 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 4 T - 18 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$D_{4}$ \( 1 + 4 T - 2 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
59$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$D_{4}$ \( 1 - 5 T + 12 T^{2} - 5 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 - 5 T + 106 T^{2} - 5 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 + 22 T + 250 T^{2} + 22 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 + 7 T + 24 T^{2} + 7 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 7 T + 70 T^{2} - 7 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 + 14 T + 154 T^{2} + 14 p T^{3} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.6767586690, −15.0521486342, −14.4837948602, −14.0181089352, −13.4471958374, −12.9884387212, −12.7920519994, −12.1251669396, −11.7081834971, −11.3748859747, −10.4975591888, −10.0848725577, −9.92329543116, −9.14933255526, −8.79006016606, −8.09677153379, −7.30389943030, −6.75900134747, −6.32754210755, −5.96142298096, −5.23820561080, −4.23564211599, −3.76388131546, −3.03751652909, −1.85975146490, 0, 1.85975146490, 3.03751652909, 3.76388131546, 4.23564211599, 5.23820561080, 5.96142298096, 6.32754210755, 6.75900134747, 7.30389943030, 8.09677153379, 8.79006016606, 9.14933255526, 9.92329543116, 10.0848725577, 10.4975591888, 11.3748859747, 11.7081834971, 12.1251669396, 12.7920519994, 12.9884387212, 13.4471958374, 14.0181089352, 14.4837948602, 15.0521486342, 15.6767586690

Graph of the $Z$-function along the critical line