Properties

Label 4-180e2-1.1-c13e2-0-2
Degree $4$
Conductor $32400$
Sign $1$
Analytic cond. $37255.0$
Root an. cond. $13.8930$
Motivic weight $13$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.12e4·5-s + 1.00e5·7-s + 8.29e6·11-s − 1.24e7·13-s − 5.92e7·17-s + 6.90e7·19-s − 3.08e8·23-s + 7.32e8·25-s − 6.33e9·29-s + 1.23e9·31-s − 3.14e9·35-s + 1.25e10·37-s + 5.83e10·41-s − 5.28e10·43-s + 8.11e10·47-s − 8.08e10·49-s + 1.74e11·53-s − 2.59e11·55-s + 2.98e11·59-s − 3.90e11·61-s + 3.88e11·65-s − 4.38e11·67-s + 6.49e11·71-s + 3.39e11·73-s + 8.33e11·77-s − 5.47e12·79-s + 4.26e12·83-s + ⋯
L(s)  = 1  − 0.894·5-s + 0.322·7-s + 1.41·11-s − 0.713·13-s − 0.595·17-s + 0.336·19-s − 0.434·23-s + 3/5·25-s − 1.97·29-s + 0.250·31-s − 0.288·35-s + 0.801·37-s + 1.91·41-s − 1.27·43-s + 1.09·47-s − 0.834·49-s + 1.08·53-s − 1.26·55-s + 0.922·59-s − 0.970·61-s + 0.638·65-s − 0.591·67-s + 0.602·71-s + 0.262·73-s + 0.455·77-s − 2.53·79-s + 1.43·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 32400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(14-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 32400 ^{s/2} \, \Gamma_{\C}(s+13/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(32400\)    =    \(2^{4} \cdot 3^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(37255.0\)
Root analytic conductor: \(13.8930\)
Motivic weight: \(13\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 32400,\ (\ :13/2, 13/2),\ 1)\)

Particular Values

\(L(7)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{15}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_1$ \( ( 1 + p^{6} T )^{2} \)
good7$D_{4}$ \( 1 - 100528 T + 12988568130 p T^{2} - 100528 p^{13} T^{3} + p^{26} T^{4} \)
11$D_{4}$ \( 1 - 8293128 T + 5962186602578 p T^{2} - 8293128 p^{13} T^{3} + p^{26} T^{4} \)
13$D_{4}$ \( 1 + 12420020 T + 199064867424606 T^{2} + 12420020 p^{13} T^{3} + p^{26} T^{4} \)
17$D_{4}$ \( 1 + 59224788 T + 20390024845520710 T^{2} + 59224788 p^{13} T^{3} + p^{26} T^{4} \)
19$D_{4}$ \( 1 - 69043480 T + 45955465455476118 T^{2} - 69043480 p^{13} T^{3} + p^{26} T^{4} \)
23$D_{4}$ \( 1 + 308501328 T + 906428806985054062 T^{2} + 308501328 p^{13} T^{3} + p^{26} T^{4} \)
29$D_{4}$ \( 1 + 6338832348 T + 30326805181394732254 T^{2} + 6338832348 p^{13} T^{3} + p^{26} T^{4} \)
31$D_{4}$ \( 1 - 1235564368 T + 16709949008135416638 T^{2} - 1235564368 p^{13} T^{3} + p^{26} T^{4} \)
37$D_{4}$ \( 1 - 12505462204 T + \)\(23\!\cdots\!98\)\( T^{2} - 12505462204 p^{13} T^{3} + p^{26} T^{4} \)
41$D_{4}$ \( 1 - 1423551660 p T + \)\(26\!\cdots\!42\)\( T^{2} - 1423551660 p^{14} T^{3} + p^{26} T^{4} \)
43$D_{4}$ \( 1 + 52821350072 T + \)\(39\!\cdots\!82\)\( T^{2} + 52821350072 p^{13} T^{3} + p^{26} T^{4} \)
47$D_{4}$ \( 1 - 81183249408 T + \)\(12\!\cdots\!70\)\( T^{2} - 81183249408 p^{13} T^{3} + p^{26} T^{4} \)
53$D_{4}$ \( 1 - 174532259604 T + \)\(42\!\cdots\!50\)\( T^{2} - 174532259604 p^{13} T^{3} + p^{26} T^{4} \)
59$D_{4}$ \( 1 - 298930858632 T + \)\(83\!\cdots\!14\)\( T^{2} - 298930858632 p^{13} T^{3} + p^{26} T^{4} \)
61$D_{4}$ \( 1 + 390666702596 T + \)\(33\!\cdots\!66\)\( T^{2} + 390666702596 p^{13} T^{3} + p^{26} T^{4} \)
67$D_{4}$ \( 1 + 438234972008 T + \)\(11\!\cdots\!90\)\( T^{2} + 438234972008 p^{13} T^{3} + p^{26} T^{4} \)
71$D_{4}$ \( 1 - 649973456400 T + \)\(22\!\cdots\!22\)\( T^{2} - 649973456400 p^{13} T^{3} + p^{26} T^{4} \)
73$D_{4}$ \( 1 - 339800917684 T + \)\(12\!\cdots\!30\)\( T^{2} - 339800917684 p^{13} T^{3} + p^{26} T^{4} \)
79$D_{4}$ \( 1 + 5476093581584 T + \)\(15\!\cdots\!42\)\( T^{2} + 5476093581584 p^{13} T^{3} + p^{26} T^{4} \)
83$D_{4}$ \( 1 - 4260452641512 T + \)\(19\!\cdots\!62\)\( T^{2} - 4260452641512 p^{13} T^{3} + p^{26} T^{4} \)
89$D_{4}$ \( 1 - 1526954209260 T + \)\(20\!\cdots\!38\)\( T^{2} - 1526954209260 p^{13} T^{3} + p^{26} T^{4} \)
97$D_{4}$ \( 1 + 7704040415804 T + \)\(12\!\cdots\!58\)\( T^{2} + 7704040415804 p^{13} T^{3} + p^{26} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.805068319928242213706690660113, −9.693631457204707866998599587261, −8.870552658616260062425983222442, −8.824306696615239782984171685536, −7.86806080551228032208787313867, −7.67333969285462808253368294608, −7.06797297289814296980920111946, −6.69078480330801194699059095751, −5.91663286258477767489227927934, −5.57571526499903560712340365113, −4.59632882348738477303595618625, −4.47963245337868359950186970985, −3.70016449315602839051440007742, −3.54726530613155915064700393842, −2.50088480085319733587251181997, −2.20747844919344545664915403820, −1.27878644723122172462676720914, −1.04915048855780290588695361158, 0, 0, 1.04915048855780290588695361158, 1.27878644723122172462676720914, 2.20747844919344545664915403820, 2.50088480085319733587251181997, 3.54726530613155915064700393842, 3.70016449315602839051440007742, 4.47963245337868359950186970985, 4.59632882348738477303595618625, 5.57571526499903560712340365113, 5.91663286258477767489227927934, 6.69078480330801194699059095751, 7.06797297289814296980920111946, 7.67333969285462808253368294608, 7.86806080551228032208787313867, 8.824306696615239782984171685536, 8.870552658616260062425983222442, 9.693631457204707866998599587261, 9.805068319928242213706690660113

Graph of the $Z$-function along the critical line