Properties

Label 4-1800e2-1.1-c3e2-0-18
Degree $4$
Conductor $3240000$
Sign $1$
Analytic cond. $11279.1$
Root an. cond. $10.3055$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 44·11-s + 106·19-s + 44·29-s − 70·31-s + 936·41-s + 325·49-s + 892·59-s + 254·61-s − 72·71-s − 2.73e3·79-s + 288·89-s + 2.88e3·101-s − 1.40e3·109-s − 1.21e3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 4.39e3·169-s + 173-s + 179-s + 181-s + ⋯
L(s)  = 1  − 1.20·11-s + 1.27·19-s + 0.281·29-s − 0.405·31-s + 3.56·41-s + 0.947·49-s + 1.96·59-s + 0.533·61-s − 0.120·71-s − 3.89·79-s + 0.343·89-s + 2.83·101-s − 1.23·109-s − 0.909·121-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + 0.000508·157-s + 0.000480·163-s + 0.000463·167-s + 1.99·169-s + 0.000439·173-s + 0.000417·179-s + 0.000410·181-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3240000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240000 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(3240000\)    =    \(2^{6} \cdot 3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(11279.1\)
Root analytic conductor: \(10.3055\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 3240000,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.283270983\)
\(L(\frac12)\) \(\approx\) \(3.283270983\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7$C_2^2$ \( 1 - 325 T^{2} + p^{6} T^{4} \)
11$C_2$ \( ( 1 + 2 p T + p^{3} T^{2} )^{2} \)
13$C_2^2$ \( 1 - 4393 T^{2} + p^{6} T^{4} \)
17$C_2^2$ \( 1 - 6462 T^{2} + p^{6} T^{4} \)
19$C_2$ \( ( 1 - 53 T + p^{3} T^{2} )^{2} \)
23$C_2^2$ \( 1 - 20970 T^{2} + p^{6} T^{4} \)
29$C_2$ \( ( 1 - 22 T + p^{3} T^{2} )^{2} \)
31$C_2$ \( ( 1 + 35 T + p^{3} T^{2} )^{2} \)
37$C_2^2$ \( 1 - 28406 T^{2} + p^{6} T^{4} \)
41$C_2$ \( ( 1 - 468 T + p^{3} T^{2} )^{2} \)
43$C_2^2$ \( 1 + 26747 T^{2} + p^{6} T^{4} \)
47$C_2^2$ \( 1 - 154746 T^{2} + p^{6} T^{4} \)
53$C_2$ \( ( 1 - p^{3} T^{2} )^{2} \)
59$C_2$ \( ( 1 - 446 T + p^{3} T^{2} )^{2} \)
61$C_2$ \( ( 1 - 127 T + p^{3} T^{2} )^{2} \)
67$C_2^2$ \( 1 + 56195 T^{2} + p^{6} T^{4} \)
71$C_2$ \( ( 1 + 36 T + p^{3} T^{2} )^{2} \)
73$C_2^2$ \( 1 - 505550 T^{2} + p^{6} T^{4} \)
79$C_2$ \( ( 1 + 1368 T + p^{3} T^{2} )^{2} \)
83$C_2^2$ \( 1 + 151470 T^{2} + p^{6} T^{4} \)
89$C_2$ \( ( 1 - 144 T + p^{3} T^{2} )^{2} \)
97$C_2^2$ \( 1 - 661105 T^{2} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.978953864563239822186012059711, −8.797085239517514994844994507050, −8.386410561804469857769750618171, −7.64580490535863809511218551226, −7.54008219943278856057609697814, −7.47625665065262454068042498570, −6.71394656566363103196436034771, −6.34742313617586669267331525610, −5.62838586415054428676283680000, −5.59283556204901695296822275329, −5.21112062651992409561914800821, −4.56214095566332762806990356334, −4.10577686294779830313008645946, −3.80897897010173835143947235725, −2.88938623916626015743178619688, −2.82882624961970486927670791969, −2.28651331479010322288551122849, −1.56349116405121224044442575562, −0.840988129822077940071024306653, −0.49358286890047522587309732690, 0.49358286890047522587309732690, 0.840988129822077940071024306653, 1.56349116405121224044442575562, 2.28651331479010322288551122849, 2.82882624961970486927670791969, 2.88938623916626015743178619688, 3.80897897010173835143947235725, 4.10577686294779830313008645946, 4.56214095566332762806990356334, 5.21112062651992409561914800821, 5.59283556204901695296822275329, 5.62838586415054428676283680000, 6.34742313617586669267331525610, 6.71394656566363103196436034771, 7.47625665065262454068042498570, 7.54008219943278856057609697814, 7.64580490535863809511218551226, 8.386410561804469857769750618171, 8.797085239517514994844994507050, 8.978953864563239822186012059711

Graph of the $Z$-function along the critical line