| L(s) = 1 | − 2·2-s + 2·4-s − 8·13-s − 4·16-s + 16·26-s + 4·31-s + 8·32-s − 16·37-s − 4·41-s − 8·43-s + 10·49-s − 16·52-s − 12·53-s − 8·62-s − 8·64-s + 24·67-s − 24·71-s + 32·74-s − 20·79-s + 8·82-s − 32·83-s + 16·86-s − 20·89-s − 20·98-s + 24·106-s − 24·107-s + 22·121-s + ⋯ |
| L(s) = 1 | − 1.41·2-s + 4-s − 2.21·13-s − 16-s + 3.13·26-s + 0.718·31-s + 1.41·32-s − 2.63·37-s − 0.624·41-s − 1.21·43-s + 10/7·49-s − 2.21·52-s − 1.64·53-s − 1.01·62-s − 64-s + 2.93·67-s − 2.84·71-s + 3.71·74-s − 2.25·79-s + 0.883·82-s − 3.51·83-s + 1.72·86-s − 2.11·89-s − 2.02·98-s + 2.33·106-s − 2.32·107-s + 2·121-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.875998004626885302377960097467, −8.756825596544356717914668224294, −8.413234306678107424534958907818, −8.036091677772918509625916872702, −7.34566300328257519877336630627, −7.33253750549547717658542255343, −6.80117255286592095212583072175, −6.74204108544332128169277060569, −5.82640220486720773920543179375, −5.47089450309105897255216798680, −4.94223590153793988921772925873, −4.65203588439624544080891765752, −4.14305611505320979620291930505, −3.47535315893522131663500516509, −2.68565329769207784762041051970, −2.60309321654469820398165846484, −1.68115709682987794279755210826, −1.40173502057083032090356188986, 0, 0,
1.40173502057083032090356188986, 1.68115709682987794279755210826, 2.60309321654469820398165846484, 2.68565329769207784762041051970, 3.47535315893522131663500516509, 4.14305611505320979620291930505, 4.65203588439624544080891765752, 4.94223590153793988921772925873, 5.47089450309105897255216798680, 5.82640220486720773920543179375, 6.74204108544332128169277060569, 6.80117255286592095212583072175, 7.33253750549547717658542255343, 7.34566300328257519877336630627, 8.036091677772918509625916872702, 8.413234306678107424534958907818, 8.756825596544356717914668224294, 8.875998004626885302377960097467