| L(s) = 1 | − 2·2-s + 2·4-s + 12·13-s − 4·16-s − 24·26-s − 4·31-s + 8·32-s − 4·37-s + 8·41-s + 8·43-s − 2·49-s + 24·52-s + 20·53-s + 8·62-s − 8·64-s + 24·67-s + 16·71-s + 8·74-s + 4·79-s − 16·82-s − 16·86-s + 8·89-s + 4·98-s − 40·106-s − 40·107-s + 18·121-s − 8·124-s + ⋯ |
| L(s) = 1 | − 1.41·2-s + 4-s + 3.32·13-s − 16-s − 4.70·26-s − 0.718·31-s + 1.41·32-s − 0.657·37-s + 1.24·41-s + 1.21·43-s − 2/7·49-s + 3.32·52-s + 2.74·53-s + 1.01·62-s − 64-s + 2.93·67-s + 1.89·71-s + 0.929·74-s + 0.450·79-s − 1.76·82-s − 1.72·86-s + 0.847·89-s + 0.404·98-s − 3.88·106-s − 3.86·107-s + 1.63·121-s − 0.718·124-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.621197324\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.621197324\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.193604476428262694927115996249, −9.156869977634684961611498147786, −8.706311034544052217568415576446, −8.362372008007936551860659670815, −7.962545256253017799483039785862, −7.87684925850585019163152786079, −7.01254489591778499828421736450, −6.86285963184122265869921684291, −6.43748728406915112167096259303, −5.97534387240982335701887714394, −5.49380266067131011559389839433, −5.26225883113365586509648836581, −4.27733583957108090089648976129, −3.93152832254805488652289088242, −3.73290851556379399137999713601, −3.02941537680886862058591919431, −2.24047843681278126090859570014, −1.82823276316141233883811032023, −0.903121479822252690218943990070, −0.885674971016098093782675370385,
0.885674971016098093782675370385, 0.903121479822252690218943990070, 1.82823276316141233883811032023, 2.24047843681278126090859570014, 3.02941537680886862058591919431, 3.73290851556379399137999713601, 3.93152832254805488652289088242, 4.27733583957108090089648976129, 5.26225883113365586509648836581, 5.49380266067131011559389839433, 5.97534387240982335701887714394, 6.43748728406915112167096259303, 6.86285963184122265869921684291, 7.01254489591778499828421736450, 7.87684925850585019163152786079, 7.962545256253017799483039785862, 8.362372008007936551860659670815, 8.706311034544052217568415576446, 9.156869977634684961611498147786, 9.193604476428262694927115996249