| L(s) = 1 | + 2·2-s + 2·4-s + 8·13-s − 4·16-s + 16·26-s + 4·31-s − 8·32-s + 16·37-s − 4·41-s + 8·43-s + 10·49-s + 16·52-s + 12·53-s + 8·62-s − 8·64-s − 24·67-s − 24·71-s + 32·74-s − 20·79-s − 8·82-s + 32·83-s + 16·86-s − 20·89-s + 20·98-s + 24·106-s + 24·107-s + 22·121-s + ⋯ |
| L(s) = 1 | + 1.41·2-s + 4-s + 2.21·13-s − 16-s + 3.13·26-s + 0.718·31-s − 1.41·32-s + 2.63·37-s − 0.624·41-s + 1.21·43-s + 10/7·49-s + 2.21·52-s + 1.64·53-s + 1.01·62-s − 64-s − 2.93·67-s − 2.84·71-s + 3.71·74-s − 2.25·79-s − 0.883·82-s + 3.51·83-s + 1.72·86-s − 2.11·89-s + 2.02·98-s + 2.33·106-s + 2.32·107-s + 2·121-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(5.972333911\) |
| \(L(\frac12)\) |
\(\approx\) |
\(5.972333911\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.314507200618002250533247451487, −9.030282948693486057450184829038, −8.591375150705488739242755706255, −8.503424704837594372126250735292, −7.77811424463970224642902418798, −7.31786813172050784231860706904, −7.13288526493330359549415890384, −6.29493602484131702060044460157, −6.16110717016107376368279304677, −5.79731905573169127111856520655, −5.68418036403554140054220913322, −4.80276296320580186913037152092, −4.48094235981944098067566370914, −4.03921192762374973116087921436, −3.85298257708795142978632907277, −3.00727653981535997344366122134, −2.93070813281972060609281706698, −2.20113947149360345231982950921, −1.40456347650071723392420288314, −0.77252469056645028172796100366,
0.77252469056645028172796100366, 1.40456347650071723392420288314, 2.20113947149360345231982950921, 2.93070813281972060609281706698, 3.00727653981535997344366122134, 3.85298257708795142978632907277, 4.03921192762374973116087921436, 4.48094235981944098067566370914, 4.80276296320580186913037152092, 5.68418036403554140054220913322, 5.79731905573169127111856520655, 6.16110717016107376368279304677, 6.29493602484131702060044460157, 7.13288526493330359549415890384, 7.31786813172050784231860706904, 7.77811424463970224642902418798, 8.503424704837594372126250735292, 8.591375150705488739242755706255, 9.030282948693486057450184829038, 9.314507200618002250533247451487