| L(s) = 1 | − 2-s − 4-s − 7-s + 3·8-s + 2·11-s + 14-s − 16-s − 2·22-s − 2·23-s + 6·25-s + 28-s − 4·29-s − 5·32-s − 12·37-s + 8·43-s − 2·44-s + 2·46-s + 49-s − 6·50-s + 8·53-s − 3·56-s + 4·58-s + 7·64-s − 4·67-s + 18·71-s + 12·74-s − 2·77-s + ⋯ |
| L(s) = 1 | − 0.707·2-s − 1/2·4-s − 0.377·7-s + 1.06·8-s + 0.603·11-s + 0.267·14-s − 1/4·16-s − 0.426·22-s − 0.417·23-s + 6/5·25-s + 0.188·28-s − 0.742·29-s − 0.883·32-s − 1.97·37-s + 1.21·43-s − 0.301·44-s + 0.294·46-s + 1/7·49-s − 0.848·50-s + 1.09·53-s − 0.400·56-s + 0.525·58-s + 7/8·64-s − 0.488·67-s + 2.13·71-s + 1.39·74-s − 0.227·77-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1778112 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1778112 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.69436240585505637046106862381, −7.12401266944453521790654546731, −6.90984464629782950007374183980, −6.49574337812645372442644328590, −5.85393310167679624266309035971, −5.34100021737795120695847186140, −5.12636757943171825321245231300, −4.40285097418014394329795802250, −3.97012400597767330070757225028, −3.65463483127218772512833540747, −2.96476256906697319181036798112, −2.29038487997286501682693357438, −1.58410430057270510305458164400, −0.951184521892745111395623271371, 0,
0.951184521892745111395623271371, 1.58410430057270510305458164400, 2.29038487997286501682693357438, 2.96476256906697319181036798112, 3.65463483127218772512833540747, 3.97012400597767330070757225028, 4.40285097418014394329795802250, 5.12636757943171825321245231300, 5.34100021737795120695847186140, 5.85393310167679624266309035971, 6.49574337812645372442644328590, 6.90984464629782950007374183980, 7.12401266944453521790654546731, 7.69436240585505637046106862381