Properties

Label 4-175e2-1.1-c3e2-0-6
Degree $4$
Conductor $30625$
Sign $1$
Analytic cond. $106.612$
Root an. cond. $3.21330$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 5·3-s − 5·4-s − 5·6-s − 14·7-s + 3·8-s − 25·9-s − 56·11-s − 25·12-s − 52·13-s + 14·14-s − 29·16-s + 103·17-s + 25·18-s − 57·19-s − 70·21-s + 56·22-s + 31·23-s + 15·24-s + 52·26-s − 240·27-s + 70·28-s − 413·29-s − 162·31-s + 115·32-s − 280·33-s − 103·34-s + ⋯
L(s)  = 1  − 0.353·2-s + 0.962·3-s − 5/8·4-s − 0.340·6-s − 0.755·7-s + 0.132·8-s − 0.925·9-s − 1.53·11-s − 0.601·12-s − 1.10·13-s + 0.267·14-s − 0.453·16-s + 1.46·17-s + 0.327·18-s − 0.688·19-s − 0.727·21-s + 0.542·22-s + 0.281·23-s + 0.127·24-s + 0.392·26-s − 1.71·27-s + 0.472·28-s − 2.64·29-s − 0.938·31-s + 0.635·32-s − 1.47·33-s − 0.519·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 30625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 30625 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(30625\)    =    \(5^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(106.612\)
Root analytic conductor: \(3.21330\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 30625,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5 \( 1 \)
7$C_1$ \( ( 1 + p T )^{2} \)
good2$D_{4}$ \( 1 + T + 3 p T^{2} + p^{3} T^{3} + p^{6} T^{4} \)
3$D_{4}$ \( 1 - 5 T + 50 T^{2} - 5 p^{3} T^{3} + p^{6} T^{4} \)
11$D_{4}$ \( 1 + 56 T + 2421 T^{2} + 56 p^{3} T^{3} + p^{6} T^{4} \)
13$D_{4}$ \( 1 + 4 p T + 4414 T^{2} + 4 p^{4} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 - 103 T + 12222 T^{2} - 103 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 + 3 p T + 14028 T^{2} + 3 p^{4} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 - 31 T + 24318 T^{2} - 31 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 + 413 T + 83948 T^{2} + 413 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 + 162 T + 21494 T^{2} + 162 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 + 75 T + 69410 T^{2} + 75 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 + 505 T + 163458 T^{2} + 505 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 - 73 T + 99574 T^{2} - 73 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 + 224 T + 100634 T^{2} + 224 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 - 262 T + 239106 T^{2} - 262 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 - 190 T - 32242 T^{2} - 190 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 - 990 T + 669098 T^{2} - 990 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 + 908 T + 525193 T^{2} + 908 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 - 127 T - 221188 T^{2} - 127 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 - 337 T + 64726 T^{2} - 337 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 + 1119 T + 1281888 T^{2} + 1119 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 - 1517 T + 1670096 T^{2} - 1517 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 + 1713 T + 2140568 T^{2} + 1713 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 + 1764 T + 1844934 T^{2} + 1764 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.12051641293368434184237837492, −11.41832470961225980992717063400, −11.01536046124060297222088543429, −10.27225130164580296470587129842, −9.682786504174133975214554776520, −9.676777644196231857586231896516, −8.811989879933023661582142136227, −8.573381728798433632334930724805, −8.030839375156797704516647440047, −7.42019505391068780583462265063, −7.08053852838920900218055868615, −5.99964463771112478201905188201, −5.26334827648799051867220881762, −5.24844023302266390233237627885, −3.91830347509576499915907771365, −3.34707444407198510518869819137, −2.69632348137062077335168125393, −2.05284208090969814397299941670, 0, 0, 2.05284208090969814397299941670, 2.69632348137062077335168125393, 3.34707444407198510518869819137, 3.91830347509576499915907771365, 5.24844023302266390233237627885, 5.26334827648799051867220881762, 5.99964463771112478201905188201, 7.08053852838920900218055868615, 7.42019505391068780583462265063, 8.030839375156797704516647440047, 8.573381728798433632334930724805, 8.811989879933023661582142136227, 9.676777644196231857586231896516, 9.682786504174133975214554776520, 10.27225130164580296470587129842, 11.01536046124060297222088543429, 11.41832470961225980992717063400, 12.12051641293368434184237837492

Graph of the $Z$-function along the critical line