Properties

Label 4-172800-1.1-c1e2-0-23
Degree $4$
Conductor $172800$
Sign $-1$
Analytic cond. $11.0178$
Root an. cond. $1.82189$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 9-s − 6·11-s − 2·13-s − 4·23-s + 25-s + 27-s − 6·33-s − 2·37-s − 2·39-s − 8·47-s − 6·49-s − 2·59-s + 4·61-s − 4·69-s − 16·71-s − 8·73-s + 75-s + 81-s − 12·83-s + 4·97-s − 6·99-s + 8·107-s + 4·109-s − 2·111-s − 2·117-s + 14·121-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/3·9-s − 1.80·11-s − 0.554·13-s − 0.834·23-s + 1/5·25-s + 0.192·27-s − 1.04·33-s − 0.328·37-s − 0.320·39-s − 1.16·47-s − 6/7·49-s − 0.260·59-s + 0.512·61-s − 0.481·69-s − 1.89·71-s − 0.936·73-s + 0.115·75-s + 1/9·81-s − 1.31·83-s + 0.406·97-s − 0.603·99-s + 0.773·107-s + 0.383·109-s − 0.189·111-s − 0.184·117-s + 1.27·121-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 172800 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 172800 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(172800\)    =    \(2^{8} \cdot 3^{3} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(11.0178\)
Root analytic conductor: \(1.82189\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 172800,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( 1 - T \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good7$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
11$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 6 T + p T^{2} ) \)
13$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
37$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
47$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
53$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
59$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
71$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
79$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
83$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
89$C_2^2$ \( 1 - 74 T^{2} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.742712558744002350260619090470, −8.536103907543821129454387229852, −7.929281054613052383393998170601, −7.61821270029823283486198862923, −7.19104594571292042836578137181, −6.56863084021586537982840850993, −5.90148277844004930868704873342, −5.44161428144835670905246681027, −4.79774534788073660052653117779, −4.45584175053390178669613747232, −3.55386146285483021693953442820, −2.96065759868694267119537321851, −2.43788296445631663518446955536, −1.65301994477207494420567951959, 0, 1.65301994477207494420567951959, 2.43788296445631663518446955536, 2.96065759868694267119537321851, 3.55386146285483021693953442820, 4.45584175053390178669613747232, 4.79774534788073660052653117779, 5.44161428144835670905246681027, 5.90148277844004930868704873342, 6.56863084021586537982840850993, 7.19104594571292042836578137181, 7.61821270029823283486198862923, 7.929281054613052383393998170601, 8.536103907543821129454387229852, 8.742712558744002350260619090470

Graph of the $Z$-function along the critical line