Properties

Label 4-172800-1.1-c1e2-0-13
Degree $4$
Conductor $172800$
Sign $1$
Analytic cond. $11.0178$
Root an. cond. $1.82189$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·5-s + 9-s + 2·15-s + 4·19-s + 3·25-s + 27-s + 4·43-s + 2·45-s + 2·49-s + 4·57-s + 4·67-s − 12·71-s + 4·73-s + 3·75-s + 81-s + 8·95-s + 16·97-s + 12·101-s + 14·121-s + 4·125-s + 127-s + 4·129-s + 131-s + 2·135-s + 137-s + 139-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.894·5-s + 1/3·9-s + 0.516·15-s + 0.917·19-s + 3/5·25-s + 0.192·27-s + 0.609·43-s + 0.298·45-s + 2/7·49-s + 0.529·57-s + 0.488·67-s − 1.42·71-s + 0.468·73-s + 0.346·75-s + 1/9·81-s + 0.820·95-s + 1.62·97-s + 1.19·101-s + 1.27·121-s + 0.357·125-s + 0.0887·127-s + 0.352·129-s + 0.0873·131-s + 0.172·135-s + 0.0854·137-s + 0.0848·139-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 172800 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 172800 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(172800\)    =    \(2^{8} \cdot 3^{3} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(11.0178\)
Root analytic conductor: \(1.82189\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 172800,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.546408887\)
\(L(\frac12)\) \(\approx\) \(2.546408887\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( 1 - T \)
5$C_1$ \( ( 1 - T )^{2} \)
good7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2^2$ \( 1 + 22 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
41$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 12 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
79$C_2^2$ \( 1 + 22 T^{2} + p^{2} T^{4} \)
83$C_2$ \( ( 1 + p T^{2} )^{2} \)
89$C_2^2$ \( 1 - 74 T^{2} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.152090260759482202656303008839, −8.813692459022818092942011437981, −8.350834389912541160170678327096, −7.62723453307151457409205938435, −7.39675758910533928165430736420, −6.80102168565646006174802846887, −6.14633099581892296818931746419, −5.83383772330482403984210898104, −5.11212807204635192120530029111, −4.71942095328565267263165090349, −3.90973085887076474368049757243, −3.31220309478760751953615386764, −2.64551201966495068137482139079, −2.00738971701237820231715588561, −1.10783399282395350103705696425, 1.10783399282395350103705696425, 2.00738971701237820231715588561, 2.64551201966495068137482139079, 3.31220309478760751953615386764, 3.90973085887076474368049757243, 4.71942095328565267263165090349, 5.11212807204635192120530029111, 5.83383772330482403984210898104, 6.14633099581892296818931746419, 6.80102168565646006174802846887, 7.39675758910533928165430736420, 7.62723453307151457409205938435, 8.350834389912541160170678327096, 8.813692459022818092942011437981, 9.152090260759482202656303008839

Graph of the $Z$-function along the critical line