Properties

Label 4-1725e2-1.1-c3e2-0-1
Degree $4$
Conductor $2975625$
Sign $1$
Analytic cond. $10358.8$
Root an. cond. $10.0885$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 6·3-s − 5·4-s + 12·6-s + 28·7-s − 12·8-s + 27·9-s − 72·11-s − 30·12-s + 60·13-s + 56·14-s − 11·16-s − 96·17-s + 54·18-s − 148·19-s + 168·21-s − 144·22-s − 46·23-s − 72·24-s + 120·26-s + 108·27-s − 140·28-s − 204·29-s − 168·31-s − 122·32-s − 432·33-s − 192·34-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.15·3-s − 5/8·4-s + 0.816·6-s + 1.51·7-s − 0.530·8-s + 9-s − 1.97·11-s − 0.721·12-s + 1.28·13-s + 1.06·14-s − 0.171·16-s − 1.36·17-s + 0.707·18-s − 1.78·19-s + 1.74·21-s − 1.39·22-s − 0.417·23-s − 0.612·24-s + 0.905·26-s + 0.769·27-s − 0.944·28-s − 1.30·29-s − 0.973·31-s − 0.673·32-s − 2.27·33-s − 0.968·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2975625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2975625 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2975625\)    =    \(3^{2} \cdot 5^{4} \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(10358.8\)
Root analytic conductor: \(10.0885\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 2975625,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( ( 1 - p T )^{2} \)
5 \( 1 \)
23$C_1$ \( ( 1 + p T )^{2} \)
good2$D_{4}$ \( 1 - p T + 9 T^{2} - p^{4} T^{3} + p^{6} T^{4} \)
7$C_4$ \( 1 - 4 p T + 874 T^{2} - 4 p^{4} T^{3} + p^{6} T^{4} \)
11$D_{4}$ \( 1 + 72 T + 3566 T^{2} + 72 p^{3} T^{3} + p^{6} T^{4} \)
13$D_{4}$ \( 1 - 60 T + 5006 T^{2} - 60 p^{3} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 + 96 T + 11930 T^{2} + 96 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 + 148 T + 14586 T^{2} + 148 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 + 204 T + 24334 T^{2} + 204 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 + 168 T + 43310 T^{2} + 168 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 + 116 T + 89878 T^{2} + 116 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 - 4 T + 132438 T^{2} - 4 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 - 420 T + 200522 T^{2} - 420 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 - 48 T + 146270 T^{2} - 48 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 + 32 T + 297210 T^{2} + 32 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 + 40 T + 211446 T^{2} + 40 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 + 764 T + 580678 T^{2} + 764 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 - 988 T + 675034 T^{2} - 988 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 + 224 T + 73998 T^{2} + 224 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 + 820 T + 921046 T^{2} + 820 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 - 1772 T + 1743226 T^{2} - 1772 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 + 1480 T + 1335006 T^{2} + 1480 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 - 744 T + 1044314 T^{2} - 744 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 - 260 T + 178758 T^{2} - 260 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.659374696639208729249847036764, −8.499371982951712201977177384550, −7.87856474228485645218249280336, −7.80612813662392544262441093964, −7.42443576673029307016418393918, −6.79599050415356389447333356503, −6.22548528264916967001140814326, −5.88603932685045812321793255650, −5.15096171190085313178987284286, −5.09959200269593206745185160073, −4.42447433356078448436677085926, −4.34108341644977490859426905557, −3.70327090202665127754689102481, −3.48022220320783984611284976958, −2.54426258077692497859776841854, −2.21539106701707074549748030542, −1.90582980938998709478424543111, −1.26094946157281827623521827876, 0, 0, 1.26094946157281827623521827876, 1.90582980938998709478424543111, 2.21539106701707074549748030542, 2.54426258077692497859776841854, 3.48022220320783984611284976958, 3.70327090202665127754689102481, 4.34108341644977490859426905557, 4.42447433356078448436677085926, 5.09959200269593206745185160073, 5.15096171190085313178987284286, 5.88603932685045812321793255650, 6.22548528264916967001140814326, 6.79599050415356389447333356503, 7.42443576673029307016418393918, 7.80612813662392544262441093964, 7.87856474228485645218249280336, 8.499371982951712201977177384550, 8.659374696639208729249847036764

Graph of the $Z$-function along the critical line