Properties

Label 4-17225-1.1-c1e2-0-0
Degree $4$
Conductor $17225$
Sign $1$
Analytic cond. $1.09828$
Root an. cond. $1.02371$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 2·3-s − 2·5-s + 2·6-s + 8-s − 2·10-s + 2·11-s + 4·13-s − 4·15-s − 16-s + 6·17-s − 4·19-s + 2·22-s + 2·24-s + 3·25-s + 4·26-s − 2·27-s − 3·29-s − 4·30-s − 8·31-s − 6·32-s + 4·33-s + 6·34-s + 37-s − 4·38-s + 8·39-s − 2·40-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.15·3-s − 0.894·5-s + 0.816·6-s + 0.353·8-s − 0.632·10-s + 0.603·11-s + 1.10·13-s − 1.03·15-s − 1/4·16-s + 1.45·17-s − 0.917·19-s + 0.426·22-s + 0.408·24-s + 3/5·25-s + 0.784·26-s − 0.384·27-s − 0.557·29-s − 0.730·30-s − 1.43·31-s − 1.06·32-s + 0.696·33-s + 1.02·34-s + 0.164·37-s − 0.648·38-s + 1.28·39-s − 0.316·40-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 17225 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 17225 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(17225\)    =    \(5^{2} \cdot 13 \cdot 53\)
Sign: $1$
Analytic conductor: \(1.09828\)
Root analytic conductor: \(1.02371\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 17225,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.921139994\)
\(L(\frac12)\) \(\approx\) \(1.921139994\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5$C_1$ \( ( 1 + T )^{2} \)
13$C_1$$\times$$C_2$ \( ( 1 + T )( 1 - 5 T + p T^{2} ) \)
53$C_1$$\times$$C_2$ \( ( 1 + T )( 1 - 3 T + p T^{2} ) \)
good2$D_{4}$ \( 1 - T + T^{2} - p T^{3} + p^{2} T^{4} \)
3$D_{4}$ \( 1 - 2 T + 4 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
7$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
11$D_{4}$ \( 1 - 2 T - 8 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 6 T + 19 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 + 4 T - T^{2} + 4 p T^{3} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
29$D_{4}$ \( 1 + 3 T + 28 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
37$D_{4}$ \( 1 - T + 36 T^{2} - p T^{3} + p^{2} T^{4} \)
41$C_2^2$ \( 1 + 37 T^{2} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 6 T + T^{2} + 6 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 + 6 T + 28 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 + 8 T + 16 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 - 2 T - 70 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 - 6 T + 13 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
71$C_2^2$ \( 1 - 86 T^{2} + p^{2} T^{4} \)
73$D_{4}$ \( 1 - 14 T + 134 T^{2} - 14 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 + 2 T + 96 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 8 T + 103 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 + 9 T + 70 T^{2} + 9 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 - 7 T + 114 T^{2} - 7 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.9005681813, −15.1220390524, −14.8220972911, −14.5522992963, −14.0418695399, −13.6168353485, −13.1912729027, −12.5776849955, −12.2532117598, −11.4936853759, −11.0386318046, −10.7263734601, −9.74455684712, −9.29772690230, −8.65700324845, −8.25630547803, −7.84421936744, −7.10727560163, −6.49854577793, −5.65654974526, −4.96017139677, −4.03994384745, −3.66794976401, −3.09182838678, −1.77381834964, 1.77381834964, 3.09182838678, 3.66794976401, 4.03994384745, 4.96017139677, 5.65654974526, 6.49854577793, 7.10727560163, 7.84421936744, 8.25630547803, 8.65700324845, 9.29772690230, 9.74455684712, 10.7263734601, 11.0386318046, 11.4936853759, 12.2532117598, 12.5776849955, 13.1912729027, 13.6168353485, 14.0418695399, 14.5522992963, 14.8220972911, 15.1220390524, 15.9005681813

Graph of the $Z$-function along the critical line