Properties

Label 4-1710e2-1.1-c1e2-0-5
Degree $4$
Conductor $2924100$
Sign $1$
Analytic cond. $186.443$
Root an. cond. $3.69518$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s − 4·5-s + 8·11-s + 16-s + 2·19-s + 4·20-s + 11·25-s − 4·29-s + 24·41-s − 8·44-s + 14·49-s − 32·55-s − 20·59-s − 12·61-s − 64-s − 24·71-s − 2·76-s + 16·79-s − 4·80-s − 16·89-s − 8·95-s − 11·100-s − 24·101-s + 28·109-s + 4·116-s + 26·121-s − 24·125-s + ⋯
L(s)  = 1  − 1/2·4-s − 1.78·5-s + 2.41·11-s + 1/4·16-s + 0.458·19-s + 0.894·20-s + 11/5·25-s − 0.742·29-s + 3.74·41-s − 1.20·44-s + 2·49-s − 4.31·55-s − 2.60·59-s − 1.53·61-s − 1/8·64-s − 2.84·71-s − 0.229·76-s + 1.80·79-s − 0.447·80-s − 1.69·89-s − 0.820·95-s − 1.09·100-s − 2.38·101-s + 2.68·109-s + 0.371·116-s + 2.36·121-s − 2.14·125-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2924100 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2924100 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2924100\)    =    \(2^{2} \cdot 3^{4} \cdot 5^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(186.443\)
Root analytic conductor: \(3.69518\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 2924100,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.576612225\)
\(L(\frac12)\) \(\approx\) \(1.576612225\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T^{2} \)
3 \( 1 \)
5$C_2$ \( 1 + 4 T + p T^{2} \)
19$C_1$ \( ( 1 - T )^{2} \)
good7$C_2$ \( ( 1 - p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 - p T^{2} )^{2} \)
29$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2^2$ \( 1 - 58 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
59$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 118 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 82 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 - 94 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.374370911423795205274291342450, −9.292024342077516206329770052315, −8.647348584629239805046654344710, −8.535367432913759626836397428952, −7.83842740388649712558927411850, −7.46071392701930798830936154448, −7.36732610777691659276556120731, −6.88956734081434786106101238285, −6.30341858174313776356701208912, −5.85263583998635103419103169491, −5.66712805410295926267963157100, −4.58029228141831859332207397481, −4.50172493008255613495263289013, −4.08181108724219159152351296004, −3.87982933375635799366194039024, −3.13051187884498796533339256776, −2.94209847647220260044219177673, −1.81626712317735118204374675795, −1.13232696657335121694437892039, −0.58515639726989476720516646524, 0.58515639726989476720516646524, 1.13232696657335121694437892039, 1.81626712317735118204374675795, 2.94209847647220260044219177673, 3.13051187884498796533339256776, 3.87982933375635799366194039024, 4.08181108724219159152351296004, 4.50172493008255613495263289013, 4.58029228141831859332207397481, 5.66712805410295926267963157100, 5.85263583998635103419103169491, 6.30341858174313776356701208912, 6.88956734081434786106101238285, 7.36732610777691659276556120731, 7.46071392701930798830936154448, 7.83842740388649712558927411850, 8.535367432913759626836397428952, 8.647348584629239805046654344710, 9.292024342077516206329770052315, 9.374370911423795205274291342450

Graph of the $Z$-function along the critical line