Properties

Label 4-168e2-1.1-c1e2-0-16
Degree $4$
Conductor $28224$
Sign $1$
Analytic cond. $1.79958$
Root an. cond. $1.15822$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 4·7-s + 9-s − 4·19-s + 8·21-s + 2·25-s − 4·27-s − 16·31-s + 4·37-s + 9·49-s − 8·57-s + 4·63-s + 4·75-s − 11·81-s − 32·93-s + 8·103-s + 28·109-s + 8·111-s − 10·121-s + 127-s + 131-s − 16·133-s + 137-s + 139-s + 18·147-s + 149-s + 151-s + ⋯
L(s)  = 1  + 1.15·3-s + 1.51·7-s + 1/3·9-s − 0.917·19-s + 1.74·21-s + 2/5·25-s − 0.769·27-s − 2.87·31-s + 0.657·37-s + 9/7·49-s − 1.05·57-s + 0.503·63-s + 0.461·75-s − 1.22·81-s − 3.31·93-s + 0.788·103-s + 2.68·109-s + 0.759·111-s − 0.909·121-s + 0.0887·127-s + 0.0873·131-s − 1.38·133-s + 0.0854·137-s + 0.0848·139-s + 1.48·147-s + 0.0819·149-s + 0.0813·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 28224 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 28224 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(28224\)    =    \(2^{6} \cdot 3^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(1.79958\)
Root analytic conductor: \(1.15822\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 28224,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.935326774\)
\(L(\frac12)\) \(\approx\) \(1.935326774\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 - 2 T + p T^{2} \)
7$C_2$ \( 1 - 4 T + p T^{2} \)
good5$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
61$C_2^2$ \( 1 - 110 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
71$C_2^2$ \( 1 + 130 T^{2} + p^{2} T^{4} \)
73$C_2^2$ \( 1 - 98 T^{2} + p^{2} T^{4} \)
79$C_2^2$ \( 1 - 146 T^{2} + p^{2} T^{4} \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2^2$ \( 1 + 130 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.65974883377888188132622586936, −10.00486810229105835754820765863, −9.272697615700606114690977373546, −8.893121052357834357791015822275, −8.513667798045717088150434618922, −7.919251810222496367542459283074, −7.52936943895418538311873766651, −7.00066723882658864992671123645, −6.04241461459300390013370589718, −5.42737993737237859210571789762, −4.74335651932396086303237226632, −4.05212686002459562297935264367, −3.37831765187502506159651009784, −2.33358272676358500232104327618, −1.72883171187513395133332243413, 1.72883171187513395133332243413, 2.33358272676358500232104327618, 3.37831765187502506159651009784, 4.05212686002459562297935264367, 4.74335651932396086303237226632, 5.42737993737237859210571789762, 6.04241461459300390013370589718, 7.00066723882658864992671123645, 7.52936943895418538311873766651, 7.919251810222496367542459283074, 8.513667798045717088150434618922, 8.893121052357834357791015822275, 9.272697615700606114690977373546, 10.00486810229105835754820765863, 10.65974883377888188132622586936

Graph of the $Z$-function along the critical line