Properties

Label 4-168e2-1.1-c1e2-0-0
Degree $4$
Conductor $28224$
Sign $1$
Analytic cond. $1.79958$
Root an. cond. $1.15822$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 4·7-s + 9-s + 4·19-s + 8·21-s + 2·25-s + 4·27-s + 16·31-s + 4·37-s + 9·49-s − 8·57-s − 4·63-s − 4·75-s − 11·81-s − 32·93-s − 8·103-s + 28·109-s − 8·111-s − 10·121-s + 127-s + 131-s − 16·133-s + 137-s + 139-s − 18·147-s + 149-s + 151-s + ⋯
L(s)  = 1  − 1.15·3-s − 1.51·7-s + 1/3·9-s + 0.917·19-s + 1.74·21-s + 2/5·25-s + 0.769·27-s + 2.87·31-s + 0.657·37-s + 9/7·49-s − 1.05·57-s − 0.503·63-s − 0.461·75-s − 1.22·81-s − 3.31·93-s − 0.788·103-s + 2.68·109-s − 0.759·111-s − 0.909·121-s + 0.0887·127-s + 0.0873·131-s − 1.38·133-s + 0.0854·137-s + 0.0848·139-s − 1.48·147-s + 0.0819·149-s + 0.0813·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 28224 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 28224 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(28224\)    =    \(2^{6} \cdot 3^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(1.79958\)
Root analytic conductor: \(1.15822\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 28224,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6451089248\)
\(L(\frac12)\) \(\approx\) \(0.6451089248\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + 2 T + p T^{2} \)
7$C_2$ \( 1 + 4 T + p T^{2} \)
good5$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
61$C_2^2$ \( 1 - 110 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
71$C_2^2$ \( 1 + 130 T^{2} + p^{2} T^{4} \)
73$C_2^2$ \( 1 - 98 T^{2} + p^{2} T^{4} \)
79$C_2^2$ \( 1 - 146 T^{2} + p^{2} T^{4} \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2^2$ \( 1 + 130 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.42175455305646155037529200631, −10.13598371854604000779538496815, −9.697048900588129159041990401969, −9.123435915447189262623776904610, −8.471591447824925262966853131863, −7.83392461629794701403201815756, −7.07345093709724690071287703176, −6.54305365458703917515509937391, −6.20409897661964783063656261325, −5.63818606439032529206874539044, −4.91682693429455677330737022363, −4.28215112882699580202983901503, −3.24929906692181964024640809239, −2.70549066195282146083432768330, −0.837590667334905948714056378019, 0.837590667334905948714056378019, 2.70549066195282146083432768330, 3.24929906692181964024640809239, 4.28215112882699580202983901503, 4.91682693429455677330737022363, 5.63818606439032529206874539044, 6.20409897661964783063656261325, 6.54305365458703917515509937391, 7.07345093709724690071287703176, 7.83392461629794701403201815756, 8.471591447824925262966853131863, 9.123435915447189262623776904610, 9.697048900588129159041990401969, 10.13598371854604000779538496815, 10.42175455305646155037529200631

Graph of the $Z$-function along the critical line