Properties

Label 4-1663488-1.1-c1e2-0-13
Degree $4$
Conductor $1663488$
Sign $1$
Analytic cond. $106.065$
Root an. cond. $3.20917$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 3·9-s − 10·11-s − 2·17-s + 2·19-s − 9·25-s − 4·27-s + 20·33-s − 22·43-s − 5·49-s + 4·51-s − 4·57-s + 8·59-s − 8·67-s + 26·73-s + 18·75-s + 5·81-s − 8·83-s − 12·89-s + 4·97-s − 30·99-s + 36·107-s + 12·113-s + 53·121-s + 127-s + 44·129-s + 131-s + ⋯
L(s)  = 1  − 1.15·3-s + 9-s − 3.01·11-s − 0.485·17-s + 0.458·19-s − 9/5·25-s − 0.769·27-s + 3.48·33-s − 3.35·43-s − 5/7·49-s + 0.560·51-s − 0.529·57-s + 1.04·59-s − 0.977·67-s + 3.04·73-s + 2.07·75-s + 5/9·81-s − 0.878·83-s − 1.27·89-s + 0.406·97-s − 3.01·99-s + 3.48·107-s + 1.12·113-s + 4.81·121-s + 0.0887·127-s + 3.87·129-s + 0.0873·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1663488 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1663488 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1663488\)    =    \(2^{9} \cdot 3^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(106.065\)
Root analytic conductor: \(3.20917\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 1663488,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 + T )^{2} \)
19$C_1$ \( ( 1 - T )^{2} \)
good5$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
7$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
11$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
37$C_2$ \( ( 1 + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 11 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 13 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
83$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.65447158208167131181021939550, −6.89246560599511419845030852504, −6.60850791131037206491890289680, −5.90641506250154868855227026945, −5.74555815379121643011841017591, −5.13767139935142260589740790897, −4.90222652055451670072407703452, −4.68719487779910370709247985620, −3.57158847095535230984643484536, −3.52150549884707699550976993427, −2.43726074335480144289137857493, −2.28209460163033114528392703875, −1.36309445163470127656106423645, 0, 0, 1.36309445163470127656106423645, 2.28209460163033114528392703875, 2.43726074335480144289137857493, 3.52150549884707699550976993427, 3.57158847095535230984643484536, 4.68719487779910370709247985620, 4.90222652055451670072407703452, 5.13767139935142260589740790897, 5.74555815379121643011841017591, 5.90641506250154868855227026945, 6.60850791131037206491890289680, 6.89246560599511419845030852504, 7.65447158208167131181021939550

Graph of the $Z$-function along the critical line