L(s) = 1 | − 4·5-s − 2·11-s + 5·13-s − 2·17-s + 2·19-s + 2·23-s + 2·25-s − 3·29-s − 9·31-s − 41-s − 16·43-s − 11·47-s − 14·49-s − 4·53-s + 8·55-s − 4·59-s + 8·61-s − 20·65-s − 2·67-s − 23·71-s − 17·73-s − 2·79-s − 12·83-s + 8·85-s + 2·89-s − 8·95-s − 2·97-s + ⋯ |
L(s) = 1 | − 1.78·5-s − 0.603·11-s + 1.38·13-s − 0.485·17-s + 0.458·19-s + 0.417·23-s + 2/5·25-s − 0.557·29-s − 1.61·31-s − 0.156·41-s − 2.43·43-s − 1.60·47-s − 2·49-s − 0.549·53-s + 1.07·55-s − 0.520·59-s + 1.02·61-s − 2.48·65-s − 0.244·67-s − 2.72·71-s − 1.98·73-s − 0.225·79-s − 1.31·83-s + 0.867·85-s + 0.211·89-s − 0.820·95-s − 0.203·97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2742336 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2742336 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 3 | | \( 1 \) |
| 23 | $C_1$ | \( ( 1 - T )^{2} \) |
good | 5 | $C_2$ | \( ( 1 + 2 T + p T^{2} )^{2} \) |
| 7 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 11 | $D_{4}$ | \( 1 + 2 T + 6 T^{2} + 2 p T^{3} + p^{2} T^{4} \) |
| 13 | $D_{4}$ | \( 1 - 5 T + 28 T^{2} - 5 p T^{3} + p^{2} T^{4} \) |
| 17 | $D_{4}$ | \( 1 + 2 T + 18 T^{2} + 2 p T^{3} + p^{2} T^{4} \) |
| 19 | $D_{4}$ | \( 1 - 2 T + 22 T^{2} - 2 p T^{3} + p^{2} T^{4} \) |
| 29 | $D_{4}$ | \( 1 + 3 T + 56 T^{2} + 3 p T^{3} + p^{2} T^{4} \) |
| 31 | $D_{4}$ | \( 1 + 9 T + 78 T^{2} + 9 p T^{3} + p^{2} T^{4} \) |
| 37 | $C_2^2$ | \( 1 + 6 T^{2} + p^{2} T^{4} \) |
| 41 | $D_{4}$ | \( 1 + T - 24 T^{2} + p T^{3} + p^{2} T^{4} \) |
| 43 | $C_2$ | \( ( 1 + 8 T + p T^{2} )^{2} \) |
| 47 | $D_{4}$ | \( 1 + 11 T + 86 T^{2} + 11 p T^{3} + p^{2} T^{4} \) |
| 53 | $C_2$ | \( ( 1 + 2 T + p T^{2} )^{2} \) |
| 59 | $D_{4}$ | \( 1 + 4 T + 54 T^{2} + 4 p T^{3} + p^{2} T^{4} \) |
| 61 | $D_{4}$ | \( 1 - 8 T + 70 T^{2} - 8 p T^{3} + p^{2} T^{4} \) |
| 67 | $D_{4}$ | \( 1 + 2 T + 118 T^{2} + 2 p T^{3} + p^{2} T^{4} \) |
| 71 | $D_{4}$ | \( 1 + 23 T + 270 T^{2} + 23 p T^{3} + p^{2} T^{4} \) |
| 73 | $D_{4}$ | \( 1 + 17 T + 180 T^{2} + 17 p T^{3} + p^{2} T^{4} \) |
| 79 | $D_{4}$ | \( 1 + 2 T + 142 T^{2} + 2 p T^{3} + p^{2} T^{4} \) |
| 83 | $D_{4}$ | \( 1 + 12 T + 134 T^{2} + 12 p T^{3} + p^{2} T^{4} \) |
| 89 | $D_{4}$ | \( 1 - 2 T + 26 T^{2} - 2 p T^{3} + p^{2} T^{4} \) |
| 97 | $D_{4}$ | \( 1 + 2 T + 42 T^{2} + 2 p T^{3} + p^{2} T^{4} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.976249067349437709764688785485, −8.746736385064706737840619030030, −8.186422433254707433153706269900, −8.124290424184138514192108824047, −7.55348928553054491057742265065, −7.40591581544749298185377153402, −6.67963513332516710599777904649, −6.59877885594318682548851978249, −5.85165657463478403100488548936, −5.48826647517209078756682284807, −5.00415181104012127363492075101, −4.45959795138111280343625868226, −4.10806812399186429025010777766, −3.59820751860751599702084420667, −3.20717455827987912561325873685, −2.95805025675360105325132450644, −1.64074797369415812029192485669, −1.59770949758107538041436817562, 0, 0,
1.59770949758107538041436817562, 1.64074797369415812029192485669, 2.95805025675360105325132450644, 3.20717455827987912561325873685, 3.59820751860751599702084420667, 4.10806812399186429025010777766, 4.45959795138111280343625868226, 5.00415181104012127363492075101, 5.48826647517209078756682284807, 5.85165657463478403100488548936, 6.59877885594318682548851978249, 6.67963513332516710599777904649, 7.40591581544749298185377153402, 7.55348928553054491057742265065, 8.124290424184138514192108824047, 8.186422433254707433153706269900, 8.746736385064706737840619030030, 8.976249067349437709764688785485