Properties

Label 4-1650e2-1.1-c1e2-0-46
Degree $4$
Conductor $2722500$
Sign $-1$
Analytic cond. $173.588$
Root an. cond. $3.62978$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 4-s + 9-s + 6·11-s + 2·12-s + 16-s + 6·23-s + 4·27-s − 4·31-s − 12·33-s − 36-s − 6·37-s − 6·44-s − 2·48-s + 10·49-s + 18·53-s − 6·59-s − 64-s − 12·67-s − 12·69-s − 12·71-s − 11·81-s − 30·89-s − 6·92-s + 8·93-s + 24·97-s + 6·99-s + ⋯
L(s)  = 1  − 1.15·3-s − 1/2·4-s + 1/3·9-s + 1.80·11-s + 0.577·12-s + 1/4·16-s + 1.25·23-s + 0.769·27-s − 0.718·31-s − 2.08·33-s − 1/6·36-s − 0.986·37-s − 0.904·44-s − 0.288·48-s + 10/7·49-s + 2.47·53-s − 0.781·59-s − 1/8·64-s − 1.46·67-s − 1.44·69-s − 1.42·71-s − 1.22·81-s − 3.17·89-s − 0.625·92-s + 0.829·93-s + 2.43·97-s + 0.603·99-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2722500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2722500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2722500\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{4} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(173.588\)
Root analytic conductor: \(3.62978\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 2722500,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T^{2} \)
3$C_2$ \( 1 + 2 T + p T^{2} \)
5 \( 1 \)
11$C_2$ \( 1 - 6 T + p T^{2} \)
good7$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 5 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
29$C_2^2$ \( 1 + 31 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 38 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 13 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 6 T + p T^{2} ) \)
59$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2^2$ \( 1 + 94 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 15 T + p T^{2} ) \)
73$C_2^2$ \( 1 + 38 T^{2} + p^{2} T^{4} \)
79$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 + 119 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + 15 T + p T^{2} )^{2} \)
97$C_2$$\times$$C_2$ \( ( 1 - 17 T + p T^{2} )( 1 - 7 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.24531710256254297085778010128, −6.99914246522674329155880281085, −6.53560756898451972211407733715, −6.02112806025489502871655396251, −5.73570796992316738046549928902, −5.39361112397672692398057116978, −4.77674336246898332049753361281, −4.48411979613718385907499329820, −3.96663400044815352195045727688, −3.53850792319081370664887559744, −2.98535621765787864816853608355, −2.22927913086969865115441291804, −1.33795924852386860532424039718, −1.00952783516717154664744262108, 0, 1.00952783516717154664744262108, 1.33795924852386860532424039718, 2.22927913086969865115441291804, 2.98535621765787864816853608355, 3.53850792319081370664887559744, 3.96663400044815352195045727688, 4.48411979613718385907499329820, 4.77674336246898332049753361281, 5.39361112397672692398057116978, 5.73570796992316738046549928902, 6.02112806025489502871655396251, 6.53560756898451972211407733715, 6.99914246522674329155880281085, 7.24531710256254297085778010128

Graph of the $Z$-function along the critical line