Properties

Label 4-1650e2-1.1-c1e2-0-33
Degree $4$
Conductor $2722500$
Sign $-1$
Analytic cond. $173.588$
Root an. cond. $3.62978$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 4-s − 2·9-s − 3·11-s − 12-s + 16-s − 3·23-s − 5·27-s − 31-s − 3·33-s + 2·36-s − 3·37-s + 3·44-s − 3·47-s + 48-s − 5·49-s + 12·53-s + 12·59-s − 64-s + 6·67-s − 3·69-s − 6·71-s + 81-s + 21·89-s + 3·92-s − 93-s + 21·97-s + ⋯
L(s)  = 1  + 0.577·3-s − 1/2·4-s − 2/3·9-s − 0.904·11-s − 0.288·12-s + 1/4·16-s − 0.625·23-s − 0.962·27-s − 0.179·31-s − 0.522·33-s + 1/3·36-s − 0.493·37-s + 0.452·44-s − 0.437·47-s + 0.144·48-s − 5/7·49-s + 1.64·53-s + 1.56·59-s − 1/8·64-s + 0.733·67-s − 0.361·69-s − 0.712·71-s + 1/9·81-s + 2.22·89-s + 0.312·92-s − 0.103·93-s + 2.13·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2722500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2722500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2722500\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{4} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(173.588\)
Root analytic conductor: \(3.62978\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 2722500,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T^{2} \)
3$C_2$ \( 1 - T + p T^{2} \)
5 \( 1 \)
11$C_2$ \( 1 + 3 T + p T^{2} \)
good7$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
13$C_2^2$ \( 1 - 4 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 16 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2^2$ \( 1 + 40 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 73 T^{2} + p^{2} T^{4} \)
47$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + p T^{2} ) \)
61$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 15 T + p T^{2} ) \)
73$C_2^2$ \( 1 - 88 T^{2} + p^{2} T^{4} \)
79$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 9 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 - 7 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.61803223569295674257357820068, −7.04144600753818729901446756765, −6.58089043479089203226227857957, −6.06226592711229873805457140919, −5.65066273488263285183621210379, −5.25815259123142587577135932819, −4.90183781136050579507498353677, −4.34113967317993007647843101464, −3.72209791622502394785449661096, −3.47672889803615794482068377787, −2.87763137195471371554477564941, −2.28658984805953971588113546637, −1.95017456688356022104862438035, −0.867025050825792368751523100866, 0, 0.867025050825792368751523100866, 1.95017456688356022104862438035, 2.28658984805953971588113546637, 2.87763137195471371554477564941, 3.47672889803615794482068377787, 3.72209791622502394785449661096, 4.34113967317993007647843101464, 4.90183781136050579507498353677, 5.25815259123142587577135932819, 5.65066273488263285183621210379, 6.06226592711229873805457140919, 6.58089043479089203226227857957, 7.04144600753818729901446756765, 7.61803223569295674257357820068

Graph of the $Z$-function along the critical line