Properties

Label 4-1650e2-1.1-c1e2-0-31
Degree $4$
Conductor $2722500$
Sign $-1$
Analytic cond. $173.588$
Root an. cond. $3.62978$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 4-s + 3·9-s − 4·11-s − 2·12-s + 16-s + 2·23-s − 4·27-s − 12·31-s + 8·33-s + 3·36-s + 4·37-s − 4·44-s − 2·47-s − 2·48-s + 49-s − 12·53-s + 4·59-s + 64-s − 4·67-s − 4·69-s + 5·81-s + 4·89-s + 2·92-s + 24·93-s + 16·97-s − 12·99-s + ⋯
L(s)  = 1  − 1.15·3-s + 1/2·4-s + 9-s − 1.20·11-s − 0.577·12-s + 1/4·16-s + 0.417·23-s − 0.769·27-s − 2.15·31-s + 1.39·33-s + 1/2·36-s + 0.657·37-s − 0.603·44-s − 0.291·47-s − 0.288·48-s + 1/7·49-s − 1.64·53-s + 0.520·59-s + 1/8·64-s − 0.488·67-s − 0.481·69-s + 5/9·81-s + 0.423·89-s + 0.208·92-s + 2.48·93-s + 1.62·97-s − 1.20·99-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2722500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2722500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2722500\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{4} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(173.588\)
Root analytic conductor: \(3.62978\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 2722500,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
3$C_1$ \( ( 1 + T )^{2} \)
5 \( 1 \)
11$C_2$ \( 1 + 4 T + p T^{2} \)
good7$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 11 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 5 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
29$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 - T + p T^{2} ) \)
41$C_2^2$ \( 1 - 61 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
47$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
53$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 12 T + p T^{2} ) \)
59$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + T + p T^{2} ) \)
61$C_2^2$ \( 1 + 38 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
73$C_2^2$ \( 1 - 94 T^{2} + p^{2} T^{4} \)
79$C_2^2$ \( 1 + 41 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 - 13 T + p T^{2} )( 1 - 3 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.30401938531888467698560235550, −7.01843422514272269949903269998, −6.54268020839335551945130771342, −6.04274263418775008507859776672, −5.67988542770658608225690943448, −5.43562123031632607424942057621, −4.83711763850699025677154612202, −4.60596573985406970882849817094, −3.93381800765446253890984572401, −3.31715140555628908863106082963, −2.95182022222770626235058807905, −2.10434751039194913585511851340, −1.77927470722125738603083694055, −0.838353953826073523244771554699, 0, 0.838353953826073523244771554699, 1.77927470722125738603083694055, 2.10434751039194913585511851340, 2.95182022222770626235058807905, 3.31715140555628908863106082963, 3.93381800765446253890984572401, 4.60596573985406970882849817094, 4.83711763850699025677154612202, 5.43562123031632607424942057621, 5.67988542770658608225690943448, 6.04274263418775008507859776672, 6.54268020839335551945130771342, 7.01843422514272269949903269998, 7.30401938531888467698560235550

Graph of the $Z$-function along the critical line