Properties

Label 4-164e2-1.1-c1e2-0-1
Degree $4$
Conductor $26896$
Sign $1$
Analytic cond. $1.71491$
Root an. cond. $1.14435$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s + 4·5-s − 3·8-s + 4·9-s + 4·10-s − 16-s + 4·18-s − 4·20-s − 12·23-s + 6·25-s + 4·31-s + 5·32-s − 4·36-s − 4·37-s − 12·40-s − 6·41-s + 12·43-s + 16·45-s − 12·46-s − 8·49-s + 6·50-s − 12·59-s + 4·61-s + 4·62-s + 7·64-s − 12·72-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s + 1.78·5-s − 1.06·8-s + 4/3·9-s + 1.26·10-s − 1/4·16-s + 0.942·18-s − 0.894·20-s − 2.50·23-s + 6/5·25-s + 0.718·31-s + 0.883·32-s − 2/3·36-s − 0.657·37-s − 1.89·40-s − 0.937·41-s + 1.82·43-s + 2.38·45-s − 1.76·46-s − 8/7·49-s + 0.848·50-s − 1.56·59-s + 0.512·61-s + 0.508·62-s + 7/8·64-s − 1.41·72-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 26896 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 26896 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(26896\)    =    \(2^{4} \cdot 41^{2}\)
Sign: $1$
Analytic conductor: \(1.71491\)
Root analytic conductor: \(1.14435\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 26896,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.984109430\)
\(L(\frac12)\) \(\approx\) \(1.984109430\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - T + p T^{2} \)
41$C_2$ \( 1 + 6 T + p T^{2} \)
good3$C_2^2$ \( 1 - 4 T^{2} + p^{2} T^{4} \)
5$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + p T^{2} ) \)
7$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 4 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 20 T^{2} + p^{2} T^{4} \)
23$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \)
43$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
47$C_2^2$ \( 1 - 40 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 74 T^{2} + p^{2} T^{4} \)
59$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 + 52 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 + 16 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
79$C_2^2$ \( 1 + 40 T^{2} + p^{2} T^{4} \)
83$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
89$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 62 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.40055180778932651559964881820, −9.911955960272971436354632936158, −9.693335626950667896037280526437, −9.325358158594172847696298594527, −8.496762909604681803744408490572, −7.993761647756516236575307062449, −7.21380793950831537304439496607, −6.36905598619971512541378504341, −6.13607935599421938681979021636, −5.54619282228675288982186307196, −4.85731632629106239954316493547, −4.25573246183196148686951291223, −3.58380881154477086499314784014, −2.41229588838619355243779657648, −1.64110821487634231113770540131, 1.64110821487634231113770540131, 2.41229588838619355243779657648, 3.58380881154477086499314784014, 4.25573246183196148686951291223, 4.85731632629106239954316493547, 5.54619282228675288982186307196, 6.13607935599421938681979021636, 6.36905598619971512541378504341, 7.21380793950831537304439496607, 7.993761647756516236575307062449, 8.496762909604681803744408490572, 9.325358158594172847696298594527, 9.693335626950667896037280526437, 9.911955960272971436354632936158, 10.40055180778932651559964881820

Graph of the $Z$-function along the critical line