L(s) = 1 | + 4·4-s − 3·5-s − 5·9-s + 11-s + 12·16-s − 12·20-s + 4·25-s − 10·31-s − 20·36-s + 4·44-s + 15·45-s − 49-s − 3·55-s − 18·59-s + 32·64-s + 18·71-s − 36·80-s + 16·81-s + 6·89-s − 5·99-s + 16·100-s + 121-s − 40·124-s + 3·125-s + 127-s + 131-s + 137-s + ⋯ |
L(s) = 1 | + 2·4-s − 1.34·5-s − 5/3·9-s + 0.301·11-s + 3·16-s − 2.68·20-s + 4/5·25-s − 1.79·31-s − 3.33·36-s + 0.603·44-s + 2.23·45-s − 1/7·49-s − 0.404·55-s − 2.34·59-s + 4·64-s + 2.13·71-s − 4.02·80-s + 16/9·81-s + 0.635·89-s − 0.502·99-s + 8/5·100-s + 1/11·121-s − 3.59·124-s + 0.268·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1630475 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1630475 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.945996699\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.945996699\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.78386483503909571561807910331, −7.52790988087429108012147116828, −7.02051968039498661407890301468, −6.59208147286700607708417702582, −6.26601684216824107557648129951, −5.74754794653349678875710884942, −5.43015975878698568723978852596, −4.89034994163855365043025916849, −4.05781061927516689834941885639, −3.59754168120135463214459998391, −3.18454604408396452211200185737, −2.85311216589406337019222737566, −2.15309334366858577702635245518, −1.63803594594217788940127740004, −0.55209935644750881682561305500,
0.55209935644750881682561305500, 1.63803594594217788940127740004, 2.15309334366858577702635245518, 2.85311216589406337019222737566, 3.18454604408396452211200185737, 3.59754168120135463214459998391, 4.05781061927516689834941885639, 4.89034994163855365043025916849, 5.43015975878698568723978852596, 5.74754794653349678875710884942, 6.26601684216824107557648129951, 6.59208147286700607708417702582, 7.02051968039498661407890301468, 7.52790988087429108012147116828, 7.78386483503909571561807910331