Properties

Label 4-162e2-1.1-c5e2-0-4
Degree $4$
Conductor $26244$
Sign $1$
Analytic cond. $675.073$
Root an. cond. $5.09727$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s − 21·5-s − 74·7-s + 64·8-s + 84·10-s − 270·11-s + 115·13-s + 296·14-s − 256·16-s − 1.72e3·17-s + 3.70e3·19-s + 1.08e3·22-s − 3.61e3·23-s + 3.12e3·25-s − 460·26-s − 1.12e3·29-s − 5.22e3·31-s + 6.88e3·34-s + 1.55e3·35-s + 1.98e4·37-s − 1.48e4·38-s − 1.34e3·40-s − 1.07e4·41-s + 1.97e4·43-s + 1.44e4·46-s − 9.98e3·47-s + 1.68e4·49-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.375·5-s − 0.570·7-s + 0.353·8-s + 0.265·10-s − 0.672·11-s + 0.188·13-s + 0.403·14-s − 1/4·16-s − 1.44·17-s + 2.35·19-s + 0.475·22-s − 1.42·23-s + 25-s − 0.133·26-s − 0.248·29-s − 0.977·31-s + 1.02·34-s + 0.214·35-s + 2.38·37-s − 1.66·38-s − 0.132·40-s − 0.999·41-s + 1.62·43-s + 1.00·46-s − 0.659·47-s + 49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 26244 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 26244 ^{s/2} \, \Gamma_{\C}(s+5/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(26244\)    =    \(2^{2} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(675.073\)
Root analytic conductor: \(5.09727\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 26244,\ (\ :5/2, 5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.9859821902\)
\(L(\frac12)\) \(\approx\) \(0.9859821902\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p^{2} T + p^{4} T^{2} \)
3 \( 1 \)
good5$C_2^2$ \( 1 + 21 T - 2684 T^{2} + 21 p^{5} T^{3} + p^{10} T^{4} \)
7$C_2^2$ \( 1 + 74 T - 11331 T^{2} + 74 p^{5} T^{3} + p^{10} T^{4} \)
11$C_2^2$ \( 1 + 270 T - 88151 T^{2} + 270 p^{5} T^{3} + p^{10} T^{4} \)
13$C_2^2$ \( 1 - 115 T - 358068 T^{2} - 115 p^{5} T^{3} + p^{10} T^{4} \)
17$C_2$ \( ( 1 + 861 T + p^{5} T^{2} )^{2} \)
19$C_2$ \( ( 1 - 1850 T + p^{5} T^{2} )^{2} \)
23$C_2^2$ \( 1 + 3618 T + 6653581 T^{2} + 3618 p^{5} T^{3} + p^{10} T^{4} \)
29$C_2^2$ \( 1 + 1125 T - 19245524 T^{2} + 1125 p^{5} T^{3} + p^{10} T^{4} \)
31$C_2^2$ \( 1 + 5228 T - 1297167 T^{2} + 5228 p^{5} T^{3} + p^{10} T^{4} \)
37$C_2$ \( ( 1 - 9917 T + p^{5} T^{2} )^{2} \)
41$C_2^2$ \( 1 + 10758 T - 121637 T^{2} + 10758 p^{5} T^{3} + p^{10} T^{4} \)
43$C_2^2$ \( 1 - 19714 T + 241633353 T^{2} - 19714 p^{5} T^{3} + p^{10} T^{4} \)
47$C_2^2$ \( 1 + 9984 T - 129664751 T^{2} + 9984 p^{5} T^{3} + p^{10} T^{4} \)
53$C_2$ \( ( 1 - 36726 T + p^{5} T^{2} )^{2} \)
59$C_2^2$ \( 1 + 26460 T - 14792699 T^{2} + 26460 p^{5} T^{3} + p^{10} T^{4} \)
61$C_2^2$ \( 1 - 53779 T + 2047584540 T^{2} - 53779 p^{5} T^{3} + p^{10} T^{4} \)
67$C_2^2$ \( 1 - 12934 T - 1182836751 T^{2} - 12934 p^{5} T^{3} + p^{10} T^{4} \)
71$C_2$ \( ( 1 + 4254 T + p^{5} T^{2} )^{2} \)
73$C_2$ \( ( 1 + 17521 T + p^{5} T^{2} )^{2} \)
79$C_2^2$ \( 1 - 36946 T - 1712049483 T^{2} - 36946 p^{5} T^{3} + p^{10} T^{4} \)
83$C_2^2$ \( 1 - 76416 T + 1900364413 T^{2} - 76416 p^{5} T^{3} + p^{10} T^{4} \)
89$C_2$ \( ( 1 + 45357 T + p^{5} T^{2} )^{2} \)
97$C_2^2$ \( 1 + 127574 T + 7687785219 T^{2} + 127574 p^{5} T^{3} + p^{10} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.95725833432204109789008224125, −11.78187572688829280480182021445, −11.10279581129843142820234485648, −10.67490370508215953986858267379, −10.12854709880607458746365962007, −9.599541798258637699933960877945, −9.192653552442823455242478236403, −8.740251602289111176055625549562, −7.963554817864361614039635942366, −7.70242345487695816721707267408, −7.02400997439735780104580356397, −6.59299272617491146376402800861, −5.50935043885459634915189713532, −5.43584676576139169529897608977, −4.23087236441569480597459129269, −3.90866927126287420103064819371, −2.85704337367496385546657868690, −2.31449377611395209955478322011, −1.10065351782441422392990979916, −0.43250884107805453715524685349, 0.43250884107805453715524685349, 1.10065351782441422392990979916, 2.31449377611395209955478322011, 2.85704337367496385546657868690, 3.90866927126287420103064819371, 4.23087236441569480597459129269, 5.43584676576139169529897608977, 5.50935043885459634915189713532, 6.59299272617491146376402800861, 7.02400997439735780104580356397, 7.70242345487695816721707267408, 7.963554817864361614039635942366, 8.740251602289111176055625549562, 9.192653552442823455242478236403, 9.599541798258637699933960877945, 10.12854709880607458746365962007, 10.67490370508215953986858267379, 11.10279581129843142820234485648, 11.78187572688829280480182021445, 11.95725833432204109789008224125

Graph of the $Z$-function along the critical line