Properties

Label 4-162e2-1.1-c5e2-0-15
Degree $4$
Conductor $26244$
Sign $1$
Analytic cond. $675.073$
Root an. cond. $5.09727$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 24·5-s − 77·7-s − 64·8-s + 96·10-s + 408·11-s − 89·13-s − 308·14-s − 256·16-s − 4.17e3·17-s − 5.23e3·19-s + 1.63e3·22-s + 1.75e3·23-s + 3.12e3·25-s − 356·26-s − 7.29e3·29-s − 2.34e3·31-s − 1.67e4·34-s − 1.84e3·35-s − 9.98e3·37-s − 2.09e4·38-s − 1.53e3·40-s − 6.52e3·41-s + 6.23e3·43-s + 7.00e3·46-s − 2.98e4·47-s + 1.68e4·49-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.429·5-s − 0.593·7-s − 0.353·8-s + 0.303·10-s + 1.01·11-s − 0.146·13-s − 0.419·14-s − 1/4·16-s − 3.50·17-s − 3.32·19-s + 0.718·22-s + 0.690·23-s + 25-s − 0.103·26-s − 1.61·29-s − 0.438·31-s − 2.47·34-s − 0.254·35-s − 1.19·37-s − 2.35·38-s − 0.151·40-s − 0.606·41-s + 0.513·43-s + 0.488·46-s − 1.96·47-s + 49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 26244 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 26244 ^{s/2} \, \Gamma_{\C}(s+5/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(26244\)    =    \(2^{2} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(675.073\)
Root analytic conductor: \(5.09727\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 26244,\ (\ :5/2, 5/2),\ 1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - p^{2} T + p^{4} T^{2} \)
3 \( 1 \)
good5$C_2^2$ \( 1 - 24 T - 2549 T^{2} - 24 p^{5} T^{3} + p^{10} T^{4} \)
7$C_2^2$ \( 1 + 11 p T - 222 p^{2} T^{2} + 11 p^{6} T^{3} + p^{10} T^{4} \)
11$C_2^2$ \( 1 - 408 T + 5413 T^{2} - 408 p^{5} T^{3} + p^{10} T^{4} \)
13$C_2^2$ \( 1 + 89 T - 363372 T^{2} + 89 p^{5} T^{3} + p^{10} T^{4} \)
17$C_2$ \( ( 1 + 2088 T + p^{5} T^{2} )^{2} \)
19$C_2$ \( ( 1 + 2617 T + p^{5} T^{2} )^{2} \)
23$C_2^2$ \( 1 - 1752 T - 3366839 T^{2} - 1752 p^{5} T^{3} + p^{10} T^{4} \)
29$C_2^2$ \( 1 + 7296 T + 32720467 T^{2} + 7296 p^{5} T^{3} + p^{10} T^{4} \)
31$C_2^2$ \( 1 + 2348 T - 23116047 T^{2} + 2348 p^{5} T^{3} + p^{10} T^{4} \)
37$C_2$ \( ( 1 + 4993 T + p^{5} T^{2} )^{2} \)
41$C_2^2$ \( 1 + 6528 T - 73241417 T^{2} + 6528 p^{5} T^{3} + p^{10} T^{4} \)
43$C_2^2$ \( 1 - 6232 T - 108170619 T^{2} - 6232 p^{5} T^{3} + p^{10} T^{4} \)
47$C_2^2$ \( 1 + 29832 T + 660603217 T^{2} + 29832 p^{5} T^{3} + p^{10} T^{4} \)
53$C_2$ \( ( 1 + 22608 T + p^{5} T^{2} )^{2} \)
59$C_2^2$ \( 1 - 19608 T - 330450635 T^{2} - 19608 p^{5} T^{3} + p^{10} T^{4} \)
61$C_2^2$ \( 1 - 22045 T - 358614276 T^{2} - 22045 p^{5} T^{3} + p^{10} T^{4} \)
67$C_2^2$ \( 1 + 48131 T + 966468054 T^{2} + 48131 p^{5} T^{3} + p^{10} T^{4} \)
71$C_2$ \( ( 1 + 720 p T + p^{5} T^{2} )^{2} \)
73$C_2$ \( ( 1 - 30737 T + p^{5} T^{2} )^{2} \)
79$C_2^2$ \( 1 + 38219 T - 1616364438 T^{2} + 38219 p^{5} T^{3} + p^{10} T^{4} \)
83$C_2^2$ \( 1 - 8112 T - 3873236099 T^{2} - 8112 p^{5} T^{3} + p^{10} T^{4} \)
89$C_2$ \( ( 1 - 44280 T + p^{5} T^{2} )^{2} \)
97$C_2^2$ \( 1 - 136651 T + 10086155544 T^{2} - 136651 p^{5} T^{3} + p^{10} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.71939401381019862494021256588, −11.14978676099283598083024944575, −10.72787808888959864208771218526, −10.53449189431062653759555245347, −9.322459829523990415534295563701, −9.266913175258583292556952025994, −8.606114153142367913290461690453, −8.477364997328223862576184199591, −7.03602722111364575356220233137, −6.76474793583775348496268593657, −6.40405203410603607550765064233, −5.92389229541271641509264368187, −4.82539971439678838390620426102, −4.47113289333526179591238391904, −3.99607647962446424866527618813, −3.14296442507508825952792166172, −2.06363008731956258365782198237, −1.92326781772676645456015035036, 0, 0, 1.92326781772676645456015035036, 2.06363008731956258365782198237, 3.14296442507508825952792166172, 3.99607647962446424866527618813, 4.47113289333526179591238391904, 4.82539971439678838390620426102, 5.92389229541271641509264368187, 6.40405203410603607550765064233, 6.76474793583775348496268593657, 7.03602722111364575356220233137, 8.477364997328223862576184199591, 8.606114153142367913290461690453, 9.266913175258583292556952025994, 9.322459829523990415534295563701, 10.53449189431062653759555245347, 10.72787808888959864208771218526, 11.14978676099283598083024944575, 11.71939401381019862494021256588

Graph of the $Z$-function along the critical line