Properties

Label 4-162e2-1.1-c5e2-0-12
Degree $4$
Conductor $26244$
Sign $1$
Analytic cond. $675.073$
Root an. cond. $5.09727$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 21·5-s − 74·7-s − 64·8-s + 84·10-s + 270·11-s + 115·13-s − 296·14-s − 256·16-s + 1.72e3·17-s + 3.70e3·19-s + 1.08e3·22-s + 3.61e3·23-s + 3.12e3·25-s + 460·26-s + 1.12e3·29-s − 5.22e3·31-s + 6.88e3·34-s − 1.55e3·35-s + 1.98e4·37-s + 1.48e4·38-s − 1.34e3·40-s + 1.07e4·41-s + 1.97e4·43-s + 1.44e4·46-s + 9.98e3·47-s + 1.68e4·49-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.375·5-s − 0.570·7-s − 0.353·8-s + 0.265·10-s + 0.672·11-s + 0.188·13-s − 0.403·14-s − 1/4·16-s + 1.44·17-s + 2.35·19-s + 0.475·22-s + 1.42·23-s + 25-s + 0.133·26-s + 0.248·29-s − 0.977·31-s + 1.02·34-s − 0.214·35-s + 2.38·37-s + 1.66·38-s − 0.132·40-s + 0.999·41-s + 1.62·43-s + 1.00·46-s + 0.659·47-s + 49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 26244 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 26244 ^{s/2} \, \Gamma_{\C}(s+5/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(26244\)    =    \(2^{2} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(675.073\)
Root analytic conductor: \(5.09727\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 26244,\ (\ :5/2, 5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(5.865631211\)
\(L(\frac12)\) \(\approx\) \(5.865631211\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - p^{2} T + p^{4} T^{2} \)
3 \( 1 \)
good5$C_2^2$ \( 1 - 21 T - 2684 T^{2} - 21 p^{5} T^{3} + p^{10} T^{4} \)
7$C_2^2$ \( 1 + 74 T - 11331 T^{2} + 74 p^{5} T^{3} + p^{10} T^{4} \)
11$C_2^2$ \( 1 - 270 T - 88151 T^{2} - 270 p^{5} T^{3} + p^{10} T^{4} \)
13$C_2^2$ \( 1 - 115 T - 358068 T^{2} - 115 p^{5} T^{3} + p^{10} T^{4} \)
17$C_2$ \( ( 1 - 861 T + p^{5} T^{2} )^{2} \)
19$C_2$ \( ( 1 - 1850 T + p^{5} T^{2} )^{2} \)
23$C_2^2$ \( 1 - 3618 T + 6653581 T^{2} - 3618 p^{5} T^{3} + p^{10} T^{4} \)
29$C_2^2$ \( 1 - 1125 T - 19245524 T^{2} - 1125 p^{5} T^{3} + p^{10} T^{4} \)
31$C_2^2$ \( 1 + 5228 T - 1297167 T^{2} + 5228 p^{5} T^{3} + p^{10} T^{4} \)
37$C_2$ \( ( 1 - 9917 T + p^{5} T^{2} )^{2} \)
41$C_2^2$ \( 1 - 10758 T - 121637 T^{2} - 10758 p^{5} T^{3} + p^{10} T^{4} \)
43$C_2^2$ \( 1 - 19714 T + 241633353 T^{2} - 19714 p^{5} T^{3} + p^{10} T^{4} \)
47$C_2^2$ \( 1 - 9984 T - 129664751 T^{2} - 9984 p^{5} T^{3} + p^{10} T^{4} \)
53$C_2$ \( ( 1 + 36726 T + p^{5} T^{2} )^{2} \)
59$C_2^2$ \( 1 - 26460 T - 14792699 T^{2} - 26460 p^{5} T^{3} + p^{10} T^{4} \)
61$C_2^2$ \( 1 - 53779 T + 2047584540 T^{2} - 53779 p^{5} T^{3} + p^{10} T^{4} \)
67$C_2^2$ \( 1 - 12934 T - 1182836751 T^{2} - 12934 p^{5} T^{3} + p^{10} T^{4} \)
71$C_2$ \( ( 1 - 4254 T + p^{5} T^{2} )^{2} \)
73$C_2$ \( ( 1 + 17521 T + p^{5} T^{2} )^{2} \)
79$C_2^2$ \( 1 - 36946 T - 1712049483 T^{2} - 36946 p^{5} T^{3} + p^{10} T^{4} \)
83$C_2^2$ \( 1 + 76416 T + 1900364413 T^{2} + 76416 p^{5} T^{3} + p^{10} T^{4} \)
89$C_2$ \( ( 1 - 45357 T + p^{5} T^{2} )^{2} \)
97$C_2^2$ \( 1 + 127574 T + 7687785219 T^{2} + 127574 p^{5} T^{3} + p^{10} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.43677520672843157191355478229, −11.77649338160192739964392328820, −11.12789728413563748121683087718, −11.06499299312297344241373954667, −9.875665508979727914687583626304, −9.823731236484416085588895077682, −9.112349428481126860369183301729, −8.976526912510018265535300869185, −7.67750167086320126910260620381, −7.66595378096261566578945713784, −6.81730851334230360094365819710, −6.23584730423760330171854420872, −5.55280083318196154458011535989, −5.31021804029106814243285728068, −4.46506501583886377640922710062, −3.70614651087798653355550999936, −3.10064427571100045277154312346, −2.63896146940599842871309395604, −1.02254176578052086964751214047, −0.999654497416168277781364818745, 0.999654497416168277781364818745, 1.02254176578052086964751214047, 2.63896146940599842871309395604, 3.10064427571100045277154312346, 3.70614651087798653355550999936, 4.46506501583886377640922710062, 5.31021804029106814243285728068, 5.55280083318196154458011535989, 6.23584730423760330171854420872, 6.81730851334230360094365819710, 7.66595378096261566578945713784, 7.67750167086320126910260620381, 8.976526912510018265535300869185, 9.112349428481126860369183301729, 9.823731236484416085588895077682, 9.875665508979727914687583626304, 11.06499299312297344241373954667, 11.12789728413563748121683087718, 11.77649338160192739964392328820, 12.43677520672843157191355478229

Graph of the $Z$-function along the critical line