# Properties

 Label 4-162e2-1.1-c1e2-0-9 Degree $4$ Conductor $26244$ Sign $-1$ Analytic cond. $1.67334$ Root an. cond. $1.13735$ Motivic weight $1$ Arithmetic yes Rational yes Primitive no Self-dual yes Analytic rank $1$

# Origins of factors

## Dirichlet series

 L(s)  = 1 + 4-s − 8·7-s − 2·13-s + 16-s − 8·19-s − 25-s − 8·28-s − 8·31-s − 2·37-s + 16·43-s + 34·49-s − 2·52-s − 2·61-s + 64-s − 8·67-s + 22·73-s − 8·76-s − 32·79-s + 16·91-s + 4·97-s − 100-s − 8·103-s + 22·109-s − 8·112-s − 22·121-s − 8·124-s + 127-s + ⋯
 L(s)  = 1 + 1/2·4-s − 3.02·7-s − 0.554·13-s + 1/4·16-s − 1.83·19-s − 1/5·25-s − 1.51·28-s − 1.43·31-s − 0.328·37-s + 2.43·43-s + 34/7·49-s − 0.277·52-s − 0.256·61-s + 1/8·64-s − 0.977·67-s + 2.57·73-s − 0.917·76-s − 3.60·79-s + 1.67·91-s + 0.406·97-s − 0.0999·100-s − 0.788·103-s + 2.10·109-s − 0.755·112-s − 2·121-s − 0.718·124-s + 0.0887·127-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 26244 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 26244 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}

## Invariants

 Degree: $$4$$ Conductor: $$26244$$    =    $$2^{2} \cdot 3^{8}$$ Sign: $-1$ Analytic conductor: $$1.67334$$ Root analytic conductor: $$1.13735$$ Motivic weight: $$1$$ Rational: yes Arithmetic: yes Character: $\chi_{26244} (1, \cdot )$ Primitive: no Self-dual: yes Analytic rank: $$1$$ Selberg data: $$(4,\ 26244,\ (\ :1/2, 1/2),\ -1)$$

## Particular Values

 $$L(1)$$ $$=$$ $$0$$ $$L(\frac12)$$ $$=$$ $$0$$ $$L(\frac{3}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$$\times$$C_1$ $$( 1 - T )( 1 + T )$$
3 $$1$$
good5$C_2$ $$( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} )$$
7$C_2$ $$( 1 + 4 T + p T^{2} )^{2}$$
11$C_2$ $$( 1 + p T^{2} )^{2}$$
13$C_2$ $$( 1 + T + p T^{2} )^{2}$$
17$C_2$ $$( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} )$$
19$C_2$ $$( 1 + 4 T + p T^{2} )^{2}$$
23$C_2$ $$( 1 + p T^{2} )^{2}$$
29$C_2$ $$( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} )$$
31$C_2$ $$( 1 + 4 T + p T^{2} )^{2}$$
37$C_2$ $$( 1 + T + p T^{2} )^{2}$$
41$C_2$ $$( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} )$$
43$C_2$ $$( 1 - 8 T + p T^{2} )^{2}$$
47$C_2$ $$( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} )$$
53$C_2$ $$( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} )$$
59$C_2$ $$( 1 + p T^{2} )^{2}$$
61$C_2$ $$( 1 + T + p T^{2} )^{2}$$
67$C_2$ $$( 1 + 4 T + p T^{2} )^{2}$$
71$C_2$ $$( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} )$$
73$C_2$ $$( 1 - 11 T + p T^{2} )^{2}$$
79$C_2$ $$( 1 + 16 T + p T^{2} )^{2}$$
83$C_2$ $$( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} )$$
89$C_2$ $$( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} )$$
97$C_2$ $$( 1 - 2 T + p T^{2} )^{2}$$
show less
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$

## Imaginary part of the first few zeros on the critical line

−10.31837968175541511748482298781, −9.880068252452829064500103261921, −9.247376955218132439005872939948, −9.101601246278505892226541271616, −8.278948375699901432058512087738, −7.24345462277249174674167705434, −7.16277862972928710155421440227, −6.29261335708839240986736404399, −6.18735538198950166736525445007, −5.49090131952205180218546644094, −4.25638665319375785757127060430, −3.69589098584017718744945020548, −2.94651413139897301734292877776, −2.30016225881827778465495235815, 0, 2.30016225881827778465495235815, 2.94651413139897301734292877776, 3.69589098584017718744945020548, 4.25638665319375785757127060430, 5.49090131952205180218546644094, 6.18735538198950166736525445007, 6.29261335708839240986736404399, 7.16277862972928710155421440227, 7.24345462277249174674167705434, 8.278948375699901432058512087738, 9.101601246278505892226541271616, 9.247376955218132439005872939948, 9.880068252452829064500103261921, 10.31837968175541511748482298781