L(s) = 1 | − 2·5-s − 2·7-s + 4·13-s − 6·17-s − 2·19-s + 3·25-s − 12·29-s − 2·31-s + 4·35-s − 2·37-s − 12·41-s + 10·43-s − 6·47-s − 8·49-s − 18·53-s − 12·59-s − 8·61-s − 8·65-s − 8·67-s − 12·71-s + 10·73-s − 8·79-s − 6·83-s + 12·85-s − 8·91-s + 4·95-s − 2·97-s + ⋯ |
L(s) = 1 | − 0.894·5-s − 0.755·7-s + 1.10·13-s − 1.45·17-s − 0.458·19-s + 3/5·25-s − 2.22·29-s − 0.359·31-s + 0.676·35-s − 0.328·37-s − 1.87·41-s + 1.52·43-s − 0.875·47-s − 8/7·49-s − 2.47·53-s − 1.56·59-s − 1.02·61-s − 0.992·65-s − 0.977·67-s − 1.42·71-s + 1.17·73-s − 0.900·79-s − 0.658·83-s + 1.30·85-s − 0.838·91-s + 0.410·95-s − 0.203·97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2624400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2624400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 3 | | \( 1 \) |
| 5 | $C_1$ | \( ( 1 + T )^{2} \) |
good | 7 | $D_{4}$ | \( 1 + 2 T + 12 T^{2} + 2 p T^{3} + p^{2} T^{4} \) |
| 11 | $C_2^2$ | \( 1 + 19 T^{2} + p^{2} T^{4} \) |
| 13 | $D_{4}$ | \( 1 - 4 T + 18 T^{2} - 4 p T^{3} + p^{2} T^{4} \) |
| 17 | $D_{4}$ | \( 1 + 6 T + 40 T^{2} + 6 p T^{3} + p^{2} T^{4} \) |
| 19 | $D_{4}$ | \( 1 + 2 T + 27 T^{2} + 2 p T^{3} + p^{2} T^{4} \) |
| 23 | $C_2^2$ | \( 1 + 34 T^{2} + p^{2} T^{4} \) |
| 29 | $D_{4}$ | \( 1 + 12 T + 91 T^{2} + 12 p T^{3} + p^{2} T^{4} \) |
| 31 | $D_{4}$ | \( 1 + 2 T + 15 T^{2} + 2 p T^{3} + p^{2} T^{4} \) |
| 37 | $D_{4}$ | \( 1 + 2 T + 48 T^{2} + 2 p T^{3} + p^{2} T^{4} \) |
| 41 | $D_{4}$ | \( 1 + 12 T + 91 T^{2} + 12 p T^{3} + p^{2} T^{4} \) |
| 43 | $D_{4}$ | \( 1 - 10 T + 108 T^{2} - 10 p T^{3} + p^{2} T^{4} \) |
| 47 | $D_{4}$ | \( 1 + 6 T + 100 T^{2} + 6 p T^{3} + p^{2} T^{4} \) |
| 53 | $D_{4}$ | \( 1 + 18 T + 184 T^{2} + 18 p T^{3} + p^{2} T^{4} \) |
| 59 | $D_{4}$ | \( 1 + 12 T + 151 T^{2} + 12 p T^{3} + p^{2} T^{4} \) |
| 61 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) |
| 67 | $D_{4}$ | \( 1 + 8 T + 42 T^{2} + 8 p T^{3} + p^{2} T^{4} \) |
| 71 | $D_{4}$ | \( 1 + 12 T + 151 T^{2} + 12 p T^{3} + p^{2} T^{4} \) |
| 73 | $D_{4}$ | \( 1 - 10 T + 144 T^{2} - 10 p T^{3} + p^{2} T^{4} \) |
| 79 | $D_{4}$ | \( 1 + 8 T + 66 T^{2} + 8 p T^{3} + p^{2} T^{4} \) |
| 83 | $D_{4}$ | \( 1 + 6 T + 28 T^{2} + 6 p T^{3} + p^{2} T^{4} \) |
| 89 | $C_2^2$ | \( 1 + 151 T^{2} + p^{2} T^{4} \) |
| 97 | $D_{4}$ | \( 1 + 2 T + 192 T^{2} + 2 p T^{3} + p^{2} T^{4} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.110609864033189596256480630968, −8.798840750292056172938839657655, −8.523972424114836906283845010353, −7.900682435361490441100623140208, −7.69392605497610704803702373014, −7.23672528186723219200210890434, −6.62949699463280974395363368609, −6.51536639185737443296617170496, −6.01392049417018046996752699513, −5.64426769097997952436996383696, −4.84235530744126004225656247974, −4.67016232255040115722913867398, −3.92384276627848462930723316495, −3.80864020236994072163074395159, −3.09473851804565389652958363628, −2.90305631375347707399054116567, −1.71908120656316357702035224078, −1.63733370336954457494169648636, 0, 0,
1.63733370336954457494169648636, 1.71908120656316357702035224078, 2.90305631375347707399054116567, 3.09473851804565389652958363628, 3.80864020236994072163074395159, 3.92384276627848462930723316495, 4.67016232255040115722913867398, 4.84235530744126004225656247974, 5.64426769097997952436996383696, 6.01392049417018046996752699513, 6.51536639185737443296617170496, 6.62949699463280974395363368609, 7.23672528186723219200210890434, 7.69392605497610704803702373014, 7.900682435361490441100623140208, 8.523972424114836906283845010353, 8.798840750292056172938839657655, 9.110609864033189596256480630968