L(s) = 1 | − 2·5-s − 2·7-s + 4·13-s − 6·17-s − 2·19-s + 3·25-s − 12·29-s − 2·31-s + 4·35-s − 2·37-s − 12·41-s + 10·43-s − 6·47-s − 8·49-s − 18·53-s − 12·59-s − 8·61-s − 8·65-s − 8·67-s − 12·71-s + 10·73-s − 8·79-s − 6·83-s + 12·85-s − 8·91-s + 4·95-s − 2·97-s + ⋯ |
L(s) = 1 | − 0.894·5-s − 0.755·7-s + 1.10·13-s − 1.45·17-s − 0.458·19-s + 3/5·25-s − 2.22·29-s − 0.359·31-s + 0.676·35-s − 0.328·37-s − 1.87·41-s + 1.52·43-s − 0.875·47-s − 8/7·49-s − 2.47·53-s − 1.56·59-s − 1.02·61-s − 0.992·65-s − 0.977·67-s − 1.42·71-s + 1.17·73-s − 0.900·79-s − 0.658·83-s + 1.30·85-s − 0.838·91-s + 0.410·95-s − 0.203·97-s + ⋯ |
Λ(s)=(=(2624400s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(2624400s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
2624400
= 24⋅38⋅52
|
Sign: |
1
|
Analytic conductor: |
167.334 |
Root analytic conductor: |
3.59663 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 2624400, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C1 | (1+T)2 |
good | 7 | D4 | 1+2T+12T2+2pT3+p2T4 |
| 11 | C22 | 1+19T2+p2T4 |
| 13 | D4 | 1−4T+18T2−4pT3+p2T4 |
| 17 | D4 | 1+6T+40T2+6pT3+p2T4 |
| 19 | D4 | 1+2T+27T2+2pT3+p2T4 |
| 23 | C22 | 1+34T2+p2T4 |
| 29 | D4 | 1+12T+91T2+12pT3+p2T4 |
| 31 | D4 | 1+2T+15T2+2pT3+p2T4 |
| 37 | D4 | 1+2T+48T2+2pT3+p2T4 |
| 41 | D4 | 1+12T+91T2+12pT3+p2T4 |
| 43 | D4 | 1−10T+108T2−10pT3+p2T4 |
| 47 | D4 | 1+6T+100T2+6pT3+p2T4 |
| 53 | D4 | 1+18T+184T2+18pT3+p2T4 |
| 59 | D4 | 1+12T+151T2+12pT3+p2T4 |
| 61 | C2 | (1+4T+pT2)2 |
| 67 | D4 | 1+8T+42T2+8pT3+p2T4 |
| 71 | D4 | 1+12T+151T2+12pT3+p2T4 |
| 73 | D4 | 1−10T+144T2−10pT3+p2T4 |
| 79 | D4 | 1+8T+66T2+8pT3+p2T4 |
| 83 | D4 | 1+6T+28T2+6pT3+p2T4 |
| 89 | C22 | 1+151T2+p2T4 |
| 97 | D4 | 1+2T+192T2+2pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.110609864033189596256480630968, −8.798840750292056172938839657655, −8.523972424114836906283845010353, −7.900682435361490441100623140208, −7.69392605497610704803702373014, −7.23672528186723219200210890434, −6.62949699463280974395363368609, −6.51536639185737443296617170496, −6.01392049417018046996752699513, −5.64426769097997952436996383696, −4.84235530744126004225656247974, −4.67016232255040115722913867398, −3.92384276627848462930723316495, −3.80864020236994072163074395159, −3.09473851804565389652958363628, −2.90305631375347707399054116567, −1.71908120656316357702035224078, −1.63733370336954457494169648636, 0, 0,
1.63733370336954457494169648636, 1.71908120656316357702035224078, 2.90305631375347707399054116567, 3.09473851804565389652958363628, 3.80864020236994072163074395159, 3.92384276627848462930723316495, 4.67016232255040115722913867398, 4.84235530744126004225656247974, 5.64426769097997952436996383696, 6.01392049417018046996752699513, 6.51536639185737443296617170496, 6.62949699463280974395363368609, 7.23672528186723219200210890434, 7.69392605497610704803702373014, 7.900682435361490441100623140208, 8.523972424114836906283845010353, 8.798840750292056172938839657655, 9.110609864033189596256480630968