L(s) = 1 | − 2·7-s + 2·11-s + 2·17-s + 2·23-s − 25-s + 2·31-s + 2·41-s + 2·49-s − 2·53-s − 2·67-s − 2·71-s + 2·73-s − 4·77-s − 2·101-s + 2·103-s + 2·107-s − 2·113-s − 4·119-s + 121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s − 4·161-s + ⋯ |
L(s) = 1 | − 2·7-s + 2·11-s + 2·17-s + 2·23-s − 25-s + 2·31-s + 2·41-s + 2·49-s − 2·53-s − 2·67-s − 2·71-s + 2·73-s − 4·77-s − 2·101-s + 2·103-s + 2·107-s − 2·113-s − 4·119-s + 121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s − 4·161-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2624400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2624400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.173674835\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.173674835\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.817285018251890730737094461439, −9.429301058329989485656193080175, −8.983044352910611235262376047170, −8.982538672279099593675159929244, −8.051854261980889296934999516978, −7.889104379218247201104466059728, −7.17467683447287300439154983343, −7.06408967374952688612976649064, −6.42501420608906908551344626600, −6.19403952810484311052916518592, −5.97066965238798052319730917113, −5.43908222485347726288412255275, −4.63850815168763443828917117720, −4.41326031949971868231633647385, −3.59793560300391206916986020241, −3.48768316540448623648721292838, −2.97790725315358273594864002799, −2.55699935156323982454638098293, −1.34082642338976775364110092032, −1.03116483750808352984009725253,
1.03116483750808352984009725253, 1.34082642338976775364110092032, 2.55699935156323982454638098293, 2.97790725315358273594864002799, 3.48768316540448623648721292838, 3.59793560300391206916986020241, 4.41326031949971868231633647385, 4.63850815168763443828917117720, 5.43908222485347726288412255275, 5.97066965238798052319730917113, 6.19403952810484311052916518592, 6.42501420608906908551344626600, 7.06408967374952688612976649064, 7.17467683447287300439154983343, 7.889104379218247201104466059728, 8.051854261980889296934999516978, 8.982538672279099593675159929244, 8.983044352910611235262376047170, 9.429301058329989485656193080175, 9.817285018251890730737094461439